Coherent diffractive imaging of biological samples at synchrotron and free electron laser facilities
- PMID: 20149827
- DOI: 10.1016/j.jbiotec.2010.01.024
Coherent diffractive imaging of biological samples at synchrotron and free electron laser facilities
Abstract
Coherent X-ray diffractive imaging (CXDI) is a new imaging technique that offers the potential to image non-crystalline materials to sub-nanometer resolutions. Here we review the progress in CXDI of biological samples at both synchrotron and free electron laser (FEL) sources. We outline the experimental design of a CXDI experiment and summarize the iterative phase retrieval techniques that are used to produce images from the measured diffraction patterns. We describe a selection of key experiments performed in bio-imaging with CXDI from synchrotron sources, and we discuss the proof-of-principle experiments performed at FLASH at DESY in Hamburg. Finally, we show through simulation that for realistic parameters of hard X-ray FELs a resolution of a few nanometers may be achieved for individual biological objects imaged with single pulses of FEL radiation. Furthermore, we revise how this resolution may be improved to the sub-nanometer range if we image multiple copies of samples with a reproducible structure.
Copyright © 2010 Elsevier B.V. All rights reserved.
Similar articles
-
Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.Plant Cell Physiol. 2015 Jul;56(7):1272-86. doi: 10.1093/pcp/pcv032. Epub 2015 Mar 5. Plant Cell Physiol. 2015. PMID: 25745031
-
Femtosecond dark-field imaging with an X-ray free electron laser.Opt Express. 2012 Jun 4;20(12):13501-12. doi: 10.1364/OE.20.013501. Opt Express. 2012. PMID: 22714377
-
Practical implementation of a direct method for coherent diffractive imaging.Ultramicroscopy. 2011 Jun;111(7):777-81. doi: 10.1016/j.ultramic.2010.10.003. Epub 2010 Oct 23. Ultramicroscopy. 2011. PMID: 21051146
-
Radiation damage to protein specimens from electron beam imaging and diffraction: a mini-review of anti-damage approaches, with special reference to synchrotron X-ray crystallography.J Synchrotron Radiat. 2007 Jan;14(Pt 1):116-27. doi: 10.1107/S0909049506052307. Epub 2006 Dec 15. J Synchrotron Radiat. 2007. PMID: 17211078 Review.
-
Anomalous X-ray diffraction with soft X-ray synchrotron radiation.Cell Mol Biol (Noisy-le-grand). 2000 Jul;46(5):915-35. Cell Mol Biol (Noisy-le-grand). 2000. PMID: 10976874 Review.
Cited by
-
Water window ptychographic imaging with characterized coherent X-rays.J Synchrotron Radiat. 2015 May;22(3):819-27. doi: 10.1107/S1600577515005524. Epub 2015 Apr 23. J Synchrotron Radiat. 2015. PMID: 25931102 Free PMC article.
-
Coherence properties of focused X-ray beams at high-brilliance synchrotron sources.J Synchrotron Radiat. 2014 Jan;21(Pt 1):5-15. doi: 10.1107/S1600577513023850. Epub 2013 Nov 2. J Synchrotron Radiat. 2014. PMID: 24365911 Free PMC article.
-
Tomography of a Cryo-immobilized Yeast Cell Using Ptychographic Coherent X-Ray Diffractive Imaging.Biophys J. 2015 Nov 3;109(9):1986-95. doi: 10.1016/j.bpj.2015.08.047. Biophys J. 2015. PMID: 26536275 Free PMC article.
-
X-ray-Based Techniques to Study the Nano-Bio Interface.ACS Nano. 2021 Mar 23;15(3):3754-3807. doi: 10.1021/acsnano.0c09563. Epub 2021 Mar 2. ACS Nano. 2021. PMID: 33650433 Free PMC article.
-
Analytic 3D imaging of mammalian nucleus at nanoscale using coherent x-rays and optical fluorescence microscopy.Biophys J. 2014 Sep 2;107(5):1074-1081. doi: 10.1016/j.bpj.2014.07.028. Biophys J. 2014. PMID: 25185543 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical