Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun;24(4):1258-65.
doi: 10.1016/j.tiv.2010.02.002. Epub 2010 Feb 8.

A fluorescent investigation of subcellular damage in H9c2 cells caused by pavetamine, a novel polyamine

Affiliations

A fluorescent investigation of subcellular damage in H9c2 cells caused by pavetamine, a novel polyamine

C E Ellis et al. Toxicol In Vitro. 2010 Jun.

Abstract

Gousiekte, which can be translated literally as "quick disease", is one of the six most important plant toxicoses that affect livestock in South Africa. It is a plant-induced cardiomyopathy of domestic ruminants characterised by the sudden death of animals within a period of 4-8weeks after the initial ingestion of the toxic plant. The main ultrastructural change in sheep hearts is degradation of myofibres. In this study, fluorescent probes were used to investigate subcellular changes induced by pavetamine, the toxic compound that causes gousiekte, in H9c2 cells. The sarcoplasmic reticula (SR) and mitochondria showed abnormalities that were not present in the control cells. The lysosomes of treated cells were more abundant and enlarged than those of the control cells. There was increased activity of cytosolic hexosaminidase and acid phosphatase, indicating increased lysosomal membrane permeability. Lysosomes play an important role in both necrosis and apoptosis. The degradation of the myofibres may be a consequence of the increased lysosomal membrane permeability. Pavetamine was also found to cause alterations in the organisation of F-actin. F-actin in the nucleus is a transcription regulator and can therefore influence protein synthesis. Actin filament organisation also regulates the cardiac L-type Ca(2+) channels. Fluorescent staining demonstrated that pavetamine may damage a number of organelles, all of which can influence the proper functioning of the heart.

PubMed Disclaimer

Publication types

LinkOut - more resources