Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2010 Mar;51(3):484-91.
doi: 10.2967/jnumed.109.067546. Epub 2010 Feb 11.

Radioimmunotherapy with anti-CD66 antibody: improving the biodistribution using a physiologically based pharmacokinetic model

Affiliations
Free article
Clinical Trial

Radioimmunotherapy with anti-CD66 antibody: improving the biodistribution using a physiologically based pharmacokinetic model

Peter Kletting et al. J Nucl Med. 2010 Mar.
Free article

Abstract

To improve radioimmunotherapy with anti-CD66 antibody, a physiologically based pharmacokinetic (PBPK) model was developed that was capable of describing the biodistribution and extrapolating between different doses of anti-CD66 antibody.

Methods: The biodistribution of the (111)In-labeled anti-CD66 antibody of 8 patients with acute leukemia was measured. The data were fitted to 2 PBPK models. Model A incorporated effective values for antibody binding, and model B explicitly described mono- and bivalent binding. The best model was selected using the corrected Akaike information criterion. The predictive power of the model was validated comparing simulations and (90)Y-anti-CD66 serum measurements. The amount of antibody (range, 0.1-4 mg) leading to the most favorable therapeutic distribution was determined using simulations.

Results: Model B was better supported by the data. The fits of the selected model were good (adjusted R(2) > 0.91), and the estimated parameters were in a physiologically reasonable range. The median deviation of the predicted and measured (90)Y-anti-CD66 serum concentration values and the residence times were 24% (range, 17%-31%) and 9% (range, 1%-64%), respectively. The validated model predicted considerably different biodistributions for dosimetry and therapeutic settings. The smallest (0.1 mg) simulated amount of antibody resulted in the most favorable therapeutic biodistribution.

Conclusion: The developed model is capable of adequately describing the anti-CD66 antibody biodistribution and accurately predicting the time-activity serum curve of (90)Y-anti-CD66 antibody and the therapeutic serum residence time. Simulations indicate that an improvement of radioimmunotherapy with anti-CD66 antibody is achievable by reducing the amount of administered antibody; for example, the residence time of the red marrow could be increased by a factor of 1.9 +/- 0.3 using 0.27 mg of anti-CD66 antibody.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources