Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Feb;45(1):56-64.
doi: 10.1016/0885-4505(91)90008-9.

Effects of methylmalonate and propionate on uptake of glucose and ketone bodies in vitro by brain of developing rats

Affiliations

Effects of methylmalonate and propionate on uptake of glucose and ketone bodies in vitro by brain of developing rats

J C Dutra et al. Biochem Med Metab Biol. 1991 Feb.

Abstract

Methylmalonate (MMA) and propionate effects on glucose and ketone body uptake in vitro by brain of fed and 30-hour-fasted 15-day-old rats were studied. In some experiments cerebrum prisms were incubated in the presence of glucose and either MMA or propionate in Krebs-Ringer bicarbonate buffer, pH 7.0. In others, the incubation medium contained beta-hydroxybutyrate (HBA) or acetoacetate (AcAc) instead of glucose. We verified that MMA increased glucose uptake by brain of fasting animals, whereas propionate had no effect. In addition, MMA diminished HBA but not AcAc incorporation into brain prisms, whereas propionate provoked a diminished utilization of both ketone bodies by brain. The in vitro effect of MMA and propionate on brain and liver beta-hydroxybutyrate dehydrogenase activity was also investigated. It was shown that MMA but not propionate significantly inhibited this activity. Rats were also injected subcutaneously three times with a MMA buffered solution, and the in vivo effects of MMA on the above-mentioned parameters assessed. Results from these experiments confirmed the previously found in vitro MMA effects. Methylmalonic acidemic patients accumulate primarily methylmalonate and secondarily propionate and other metabolites in their tissues at levels comparable to those we used in our assays. Most patients who survive early stages of the disease show a variable degree of neuromotor delay. Since glucose and sometimes ketones are the vital substrates for brain metabolism, it is possible that our findings may contribute to a certain extent to an understanding of the biochemical basis of mental retardation in these patients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources