Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009:142:9-23; discussion 93-111.
doi: 10.1039/b910118g.

Molecular collisions, from warm to ultracold

Affiliations

Molecular collisions, from warm to ultracold

Dudley Herschbach. Faraday Discuss. 2009.

Abstract

This introductory article contrasts molecular collisions, particularly reactive collisions, in the familiar "warm" domain with the ultracold regime where the relative deBroglie wavelengths become long compared with the range of interaction of the collision partners. Ultracold collisions have much greater sensitivity to entrance channel interactions, so offer the prospect of tuning by external fields to control onset of reaction. However, for ultracold collisions, kinematic constraints impose severe limitations on the observable dynamical properties. In the exit channel for appreciably exoergic reactions, the deBroglie wavelengths become short, so the exit dynamics are much like those for warm collisions. Reactions of alkali dimers, halides, and monoxide molecules are discussed that seem especially congenial for cold collision studies.

PubMed Disclaimer

LinkOut - more resources