Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jul;49(3):289-97.
doi: 10.1016/j.plipres.2010.02.002. Epub 2010 Feb 10.

Biphenyl phosphatidylcholine: a promoter of liposome deformation and bicelle collective orientation by magnetic fields

Affiliations
Review

Biphenyl phosphatidylcholine: a promoter of liposome deformation and bicelle collective orientation by magnetic fields

Cécile Loudet et al. Prog Lipid Res. 2010 Jul.

Abstract

Membrane lipids with long saturated or unsaturated acyl chains are usually not sensitive to magnetic fields. We report in this review a few exceptions with potential use in structural biology or drug delivery. Mixtures of short and long chain phospholipids called bicelles can form discs-shaped nanoobjects (40nm) that can indeed be oriented in magnetic fields. This is due to the cooperative effect of the small diamagnetic negative anisotropic susceptibility of each of the individual lipids that build up a macroscopic magnetic moment that orients in the field like a compass. Chain saturated lipids have a tendency to be oriented with their long molecular axis perpendicular to the field, thus leading to a disc plane with a parallel orientation. Newly synthesized phosphatidylcholine (PC) containing a biphenyl group in one of its acyl chains (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC, TBBPC) shows very unusual macroscopic orienting properties due to the strong positive anisotropy of the biphenyl diamagnetic susceptibility. Mixing with short chain lipids leads to bicelles of 80nm diameter that are oriented by magnetic fields such that the disc plane is perpendicular to the field. Tuning the lipid molecular structure thus affords controlling the orientation of this "molecular goniometer". Because the magnetic alignment is remnant for tens of hours even outside the field, applications in structural biology and biotechnology, are discussed. Of great interest, micrometer-sized liposomes made from such a new lipid are strongly deformed into oblates when placed in a magnetic field greater than a few Tesla. Increasing the magnetic field leads to even greater deformations which could potentially be used in medicine for specific drug delivery purposes, under magnetic resonance imaging.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources