Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;31(14):3858-67.
doi: 10.1016/j.biomaterials.2010.01.090. Epub 2010 Feb 11.

Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions

Affiliations

Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions

Nastaran Mahmoudifar et al. Biomaterials. 2010 May.

Abstract

Chondrogenic differentiation of human adult adipose-derived stem cells was studied in vitro for the development of engineered cartilage tissue. Cells cultured under dynamic conditions in polyglycolic acid (PGA) scaffolds produced substantially higher glycosaminoglycan (GAG) and total collagen levels than cells in pellet cultures. This result reflects the importance of cell attachment and cell-scaffold interactions in stem cell differentiation and chondrogenesis. Although gene expression levels for both aggrecan and collagen type II were up-regulated significantly in PGA cultures treated with transforming growth factor beta1 (TGF-beta1), synthesis of GAG but not collagen type II was enhanced in tissue constructs when TGF-beta1 was added to the medium. Bone morphogenetic protein-6 (BMP-6) in the presence of TGF-beta1 was effective in improving GAG and total collagen production when the cells were pre-treated with fibroblast growth factor-2 (FGF-2) prior to scaffold seeding. Extending the culture duration from 2 to 5 weeks did not improve cartilage development in PGA scaffolds; loss of cells from the constructs suggested that the rate of scaffold degradation exceeded the rate of replacement by ECM during the 5-week period. Stem cells in PGA scaffolds were cultured in perfusion-type recirculation bioreactors operated with periodic medium flow reversal. The highest levels of GAG and collagen type II accumulation were achieved in the bioreactor cultures after the seeding cell density was increased from 2x10(7) to 4x10(7) cells per scaffold.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources