Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 1;341(1):305-14.
doi: 10.1016/j.ydbio.2010.02.010. Epub 2010 Feb 12.

Estrogen represses SOX9 during sex determination in the red-eared slider turtle Trachemys scripta

Affiliations
Free article

Estrogen represses SOX9 during sex determination in the red-eared slider turtle Trachemys scripta

Lindsey A Barske et al. Dev Biol. .
Free article

Abstract

Production of male offspring in viviparous eutherian mammals requires a sex-determining mechanism resistant to maternal hormones. This constraint is relaxed in egg-laying species, which are sensitive to hormones during sex determination and often use an increase in aromatase, the estrogen-synthesizing enzyme, as a key feminizing signal. In the turtle Trachemys scripta, sex is normally determined by temperature, but estrogen treatment overrides this cue and leads exclusively to female development. We assessed whether the expression of SOX9, a central male sex-determining gene in mammals, or three other conserved transcription factors (WT1, GATA4, and LHX9) was regulated by estrogen signaling in the turtle. As in mice, all somatic cell types in the immature turtle gonad initially expressed WT1 and GATA4, whereas SOX9 was restricted to the Sertoli precursors and LHX9 to the coelomic epithelium and interstitium. After the bipotential period, SOX9 was abruptly down-regulated at the female temperature. Strikingly, embryos treated with beta-estradiol at the male temperature lost SOX9 expression more than two stages earlier than controls, though WT1, GATA4, and LHX9 were unaffected. Conversely, inhibition of estrogen synthesis and signaling prevented or delayed SOX9 down-regulation at the female temperature. These results suggest that endogenous estrogen feminizes the medulla of the bipotential turtle gonad by inhibiting SOX9 expression. This mechanism may be involved in the male-to-female sex reversal in wild populations exposed to environmental estrogens, and is consistent with results showing that the estrogen receptor represses Sox9 to block transdifferentiation of granulosa cells into Sertoli-like cells in the adult mouse ovary.

PubMed Disclaimer

Publication types

LinkOut - more resources