Protecting against antimicrobial effectors in the phagosome allows SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium
- PMID: 20154132
- PMCID: PMC2849443
- DOI: 10.1128/JB.00016-10
Protecting against antimicrobial effectors in the phagosome allows SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium
Abstract
Salmonella enterica serovar Typhimurium replicates in macrophages, where it is subjected to antimicrobial substances, including superoxide, antimicrobial peptides, and proteases. The bacterium produces two periplasmic superoxide dismutases, SodCI and SodCII. Although both are expressed during infection, only SodCI contributes to virulence in the mouse by combating phagocytic superoxide. The differential contribution to virulence is at least partially due to inherent differences in the SodCI and SodCII proteins that are independent of enzymatic activity. SodCII is protease sensitive, and like other periplasmic proteins, it is released by osmotic shock. In contrast, SodCI is protease resistant and is retained within the periplasm after osmotic shock, a phenomenon that we term "tethering." We hypothesize that in the macrophage, antimicrobial peptides transiently disrupt the outer membrane. SodCII is released and/or phagocytic proteases gain access to the periplasm, and SodCII is degraded. SodCI is tethered within the periplasm and is protease resistant, thereby remaining to combat superoxide. Here we test aspects of this model. SodCII was released by the antimicrobial peptide polymyxin B or a mouse macrophage antimicrobial peptide (CRAMP), while SodCI remained tethered within the periplasm. A Salmonella pmrA constitutive mutant no longer released SodCII in vitro. Moreover, in the constitutive pmrA background, SodCII could contribute to survival of Salmonella during infection. SodCII also provided a virulence benefit in mice genetically defective in production of CRAMP. Thus, consistent with our model, protecting the outer membrane against antimicrobial peptides allows SodCII to contribute to virulence in vivo. These data also suggest direct in vivo cooperative interactions between macrophage antimicrobial effectors.
Figures






Similar articles
-
Either periplasmic tethering or protease resistance is sufficient to allow a SodC to protect Salmonella enterica serovar Typhimurium from phagocytic superoxide.Mol Microbiol. 2011 Nov;82(4):952-63. doi: 10.1111/j.1365-2958.2011.07884.x. Epub 2011 Oct 24. Mol Microbiol. 2011. PMID: 22023457 Free PMC article.
-
Structural properties of periplasmic SodCI that correlate with virulence in Salmonella enterica serovar Typhimurium.J Bacteriol. 2007 Jun;189(12):4343-52. doi: 10.1128/JB.00010-07. Epub 2007 Apr 6. J Bacteriol. 2007. PMID: 17416645 Free PMC article.
-
Periplasmic superoxide dismutase SodCI of Salmonella binds peptidoglycan to remain tethered within the periplasm.Mol Microbiol. 2015 Sep;97(5):832-843. doi: 10.1111/mmi.13067. Epub 2015 Jun 12. Mol Microbiol. 2015. PMID: 25998832 Free PMC article.
-
Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium strain 14028.J Bacteriol. 2004 Aug;186(16):5230-8. doi: 10.1128/JB.186.16.5230-5238.2004. J Bacteriol. 2004. PMID: 15292124 Free PMC article.
-
Salmonella enterica serovar Typhimurium periplasmic superoxide dismutase SodCI is a member of the PhoPQ regulon and is induced in macrophages.J Bacteriol. 2006 Nov;188(22):7853-61. doi: 10.1128/JB.00706-06. Epub 2006 Sep 15. J Bacteriol. 2006. PMID: 16980468 Free PMC article.
Cited by
-
Copper import in Escherichia coli by the yersiniabactin metallophore system.Nat Chem Biol. 2017 Sep;13(9):1016-1021. doi: 10.1038/nchembio.2441. Epub 2017 Jul 24. Nat Chem Biol. 2017. PMID: 28759019 Free PMC article.
-
Physiological consequences of multiple-target regulation by the small RNA SgrS in Escherichia coli.J Bacteriol. 2013 Nov;195(21):4804-15. doi: 10.1128/JB.00722-13. Epub 2013 Jul 19. J Bacteriol. 2013. PMID: 23873911 Free PMC article.
-
The Yersiniabactin-Associated ATP Binding Cassette Proteins YbtP and YbtQ Enhance Escherichia coli Fitness during High-Titer Cystitis.Infect Immun. 2016 Apr 22;84(5):1312-1319. doi: 10.1128/IAI.01211-15. Print 2016 May. Infect Immun. 2016. PMID: 26883590 Free PMC article.
-
How does the oxidative burst of macrophages kill bacteria? Still an open question.Mol Microbiol. 2011 May;80(3):580-3. doi: 10.1111/j.1365-2958.2011.07612.x. Epub 2011 Mar 14. Mol Microbiol. 2011. PMID: 21375590 Free PMC article.
-
Either periplasmic tethering or protease resistance is sufficient to allow a SodC to protect Salmonella enterica serovar Typhimurium from phagocytic superoxide.Mol Microbiol. 2011 Nov;82(4):952-63. doi: 10.1111/j.1365-2958.2011.07884.x. Epub 2011 Oct 24. Mol Microbiol. 2011. PMID: 22023457 Free PMC article.
References
-
- Ammendola, S., M. Ajello, P. Pasquali, J. S. Kroll, P. R. Langford, G. Rotilio, P. Valenti, and A. Battistoni. 2005. Differential contribution of SodC1 and SodC2 to intracellular survival and pathogenicity of Salmonella enterica serovar Choleraesuis. Microbes Infect. 7:698-707. - PubMed
-
- Ammendola, S., P. Pasquali, F. Pacello, G. Rotilio, M. Castor, S. J. Libby, N. Figueroa-Bossi, L. Bossi, F. C. Fang, and A. Battistoni. 2008. Regulatory and structural differences in the Cu,Zn-superoxide dismutases of Salmonella enterica and their significance for virulence. J. Biol. Chem. 283:13688-13699. - PMC - PubMed
-
- Bader, M. W., S. Sanowar, M. E. Daley, A. R. Schneider, U. Cho, W. Xu, R. E. Klevit, M. H. Le, and S. I. Miller. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461-472. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases