High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin
- PMID: 20154686
- DOI: 10.1038/nnano.2010.7
High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin
Abstract
Dynamic changes in protein conformation in response to external stimuli are important in biological processes, but it has proved difficult to directly visualize such structural changes under physiological conditions. Here, we show that high-speed atomic force microscopy can be used to visualize dynamic changes in stimulated proteins. High-resolution movies of a light-driven proton pump, bacteriorhodopsin, reveal that, upon illumination, a cytoplasmic portion of each bacteriorhodopsin monomer is brought into contact with adjacent trimers. The bacteriorhodopsin-bacteriorhodopsin interaction in the transiently formed assembly engenders both positive and negative cooperative effects in the decay kinetics as the initial bacteriorhodopsin recovers and, as a consequence, the turnover rate of the photocycle is maintained constant, on average, irrespective of the light intensity. These results confirm that high-resolution visualization is a powerful approach for studying elaborate biomolecular processes under realistic conditions.
Similar articles
-
Contact-mode high-resolution high-speed atomic force microscopy movies of the purple membrane.Biophys J. 2009 Sep 2;97(5):1354-61. doi: 10.1016/j.bpj.2009.06.019. Biophys J. 2009. PMID: 19720023 Free PMC article.
-
Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy.J Struct Biol. 2013 Oct;184(1):2-11. doi: 10.1016/j.jsb.2013.02.011. Epub 2013 Feb 24. J Struct Biol. 2013. PMID: 23462099
-
Reversible loss of crystallinity on photobleaching purple membrane in the presence of hydroxylamine.J Mol Biol. 2000 Aug 25;301(4):869-79. doi: 10.1006/jmbi.2000.3995. J Mol Biol. 2000. PMID: 10966792
-
Molecular machines directly observed by high-speed atomic force microscopy.FEBS Lett. 2013 Apr 17;587(8):997-1007. doi: 10.1016/j.febslet.2012.12.024. Epub 2013 Jan 11. FEBS Lett. 2013. PMID: 23318713 Review.
-
X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane.Annu Rev Biophys Biomol Struct. 2003;32:285-310. doi: 10.1146/annurev.biophys.32.110601.142516. Epub 2003 Feb 10. Annu Rev Biophys Biomol Struct. 2003. PMID: 12598369 Review.
Cited by
-
Tip-Enhanced Infrared Difference-Nanospectroscopy of the Proton Pump Activity of Bacteriorhodopsin in Single Purple Membrane Patches.Nano Lett. 2019 May 8;19(5):3104-3114. doi: 10.1021/acs.nanolett.9b00512. Epub 2019 Apr 17. Nano Lett. 2019. PMID: 30950626 Free PMC article.
-
Imaging modes of atomic force microscopy for application in molecular and cell biology.Nat Nanotechnol. 2017 Apr 6;12(4):295-307. doi: 10.1038/nnano.2017.45. Nat Nanotechnol. 2017. PMID: 28383040 Review.
-
Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy.Elife. 2015 Feb 2;4:e04806. doi: 10.7554/eLife.04806. Elife. 2015. PMID: 25642645 Free PMC article.
-
Single molecule kinetics of bacteriorhodopsin by HS-AFM.Nat Commun. 2021 Dec 10;12(1):7225. doi: 10.1038/s41467-021-27580-2. Nat Commun. 2021. PMID: 34893646 Free PMC article.
-
Chimeric microbial rhodopsins containing the third cytoplasmic loop of bovine rhodopsin.Biophys J. 2011 Apr 20;100(8):1874-82. doi: 10.1016/j.bpj.2011.02.054. Biophys J. 2011. PMID: 21504723 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources