Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 15:8:13.
doi: 10.1186/1741-7015-8-13.

Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection

Affiliations

Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection

Shawn A Ritchie et al. BMC Med. .

Abstract

Background: There are currently no accurate serum markers for detecting early risk of colorectal cancer (CRC). We therefore developed a non-targeted metabolomics technology to analyse the serum of pre-treatment CRC patients in order to discover putative metabolic markers associated with CRC. Using tandem-mass spectrometry (MS/MS) high throughput MS technology we evaluated the utility of selected markers and this technology for discriminating between CRC and healthy subjects.

Methods: Biomarker discovery was performed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Comprehensive metabolic profiles of CRC patients and controls from three independent populations from different continents (USA and Japan; total n = 222) were obtained and the best inter-study biomarkers determined. The structural characterization of these and related markers was performed using liquid chromatography (LC) MS/MS and nuclear magnetic resonance technologies. Clinical utility evaluations were performed using a targeted high-throughput triple-quadrupole multiple reaction monitoring (TQ-MRM) method for three biomarkers in two further independent populations from the USA and Japan (total n = 220).

Results: Comprehensive metabolomic analyses revealed significantly reduced levels of 28-36 carbon-containing hydroxylated polyunsaturated ultra long-chain fatty-acids in all three independent cohorts of CRC patient samples relative to controls. Structure elucidation studies on the C28 molecules revealed two families harbouring specifically two or three hydroxyl substitutions and varying degrees of unsaturation. The TQ-MRM method successfully validated the FTICR-MS results in two further independent studies. In total, biomarkers in five independent populations across two continental regions were evaluated (three populations by FTICR-MS and two by TQ-MRM). The resultant receiver-operator characteristic curve AUCs ranged from 0.85 to 0.98 (average = 0.91 +/- 0.04).

Conclusions: A novel comprehensive metabolomics technology was used to identify a systemic metabolic dysregulation comprising previously unknown hydroxylated polyunsaturated ultra-long chain fatty acid metabolites in CRC patients. These metabolites are easily measurable in serum and a decrease in their concentration appears to be highly sensitive and specific for the presence of CRC, regardless of ethnic or geographic background. The measurement of these metabolites may represent an additional tool for the early detection and screening of CRC.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Study design. The study comprised three phases: Fourier transform ion cyclotron resonance mass spectrometry metabolomic discovery in three independent sample sets, structural investigation and determination of metabolic biomarkers as hydroxylated polyunsaturated ultra long-chain fatty acids and validation using a triple-quadrupole multiple reaction monitoring targeted assay.
Figure 2
Figure 2
Scatter plots of average sample peak intensity fold change between colorectal cancer (CRC) and normal patient sera in three independent studies. Sample-specific peaks for all subjects were log2 normalized to the mean of the control population, and plotted according to mass (Da). Points are coloured according to significance based on an unpaired Students't-test (see legend). (A) Genomics Collaborative Inc discovery population, (B) Seracare 1 discovery population, (C) Osaka discovery population. The region boxed in grey represents the cluster of masses between 440 and 600 Da consistently reduced in the CRC patient population compared to controls in all three cohorts.
Figure 3
Figure 3
Relative intensities of metabolites 446 and 448 by disease stage and the area under the curves for each discovery dataset. (A) Bar charts of relative intensity versus disease stage in each sample set; (B) summary of P-value comparisons between disease stages and controls for metabolites 446 and 448; (C) receiver operating curve analysis based on markers 446 and 448 and all CRCs versus all controls in each discovery set.
Figure 4
Figure 4
Extracted mass spectrum of serum from normal subjects and colorectal cancer (CRC) patients. Extracts from five representative CRC and five control samples from the Genomics Collaborative discovery set were subject to high performance liquid chromatography followed by full-scan detection on an Applied Biosystems QSTAR XL™ mass spectrometer in atmospheric pressure chemical ionization negative mode. The average intensities of all ions within the mass range 100 to 700 Da eluting between 16 and 18 min are shown for each cohort. The boxed region indicates spectral features present in normal patients but absent from CRC-positive serum.
Figure 5
Figure 5
Results of triple-quadrupole multiple reaction monitoring analysis of the Seracare 2 validation sample set. (A) Scatter plots of the concentrations of hydroxylated polyunsaturated ultra long chain fatty acids (hPULCFAs) 446, 448 and 450 expressed as [13C1]-cholic acid equivalents in asymptomatic normal controls and pre-treatment colorectal cancer patients, (B) receiver operating curve (ROC) analysis based upon the corresponding scatter plots in (A). Grey dotted lines indicate the 95% confidence interval. (C) Bar charts of the average concentration equivalents of hPULCFAs by disease stage. Error bars represent standard errors of the mean. (D) ROC analysis by disease stage.
Figure 6
Figure 6
Results of triple-quadrupole multiple reaction monitoring analysis of the Chiba validation sample set. (A) Scatter plots of the concentrations of hydroxylated polyunsaturated ultra long-chain fatty acids (hPULCFAs) 446, 448 and 450 expressed as [13C1]-cholic acid equivalents in asymptomatic normal controls, and pre-treatment colorectal cancer patients, (B) receiver operating curve (ROC) analysis based upon the corresponding scatter plots in (A). Grey dotted lines indicate the 95% confidence interval. (C) Bar charts of the average concentration equivalents of hPULCFAs by disease stage. Error bars represent standard errors of the mean. (D) ROC analysis by disease stage.

Similar articles

Cited by

References

    1. Roy HK, Backman V, Goldberg MJ. Colon cancer screening: the good, the bad, and the ugly. Arch Intern Med. 2006;166:2177–2179. doi: 10.1001/archinte.166.20.2177. - DOI - PubMed
    1. Ouyang DL, Chen JJ, Getzenberg RH, Schoen RE. Noninvasive testing for colorectal cancer: a review. Am J Gastroenterol. 2005;100:1393–1403. doi: 10.1111/j.1572-0241.2005.41427.x. - DOI - PubMed
    1. Davies RJ, Miller R, Coleman N. Colorectal cancer screening: prospects for molecular stool analysis. Nat Rev Cancer. 2005;5:199–209. doi: 10.1038/nrc1545. - DOI - PubMed
    1. Kleivi K, Lind GE, Diep CB, Meling GI, Brandal LT, Nesland JM, Myklebost O, Rognum TO, Giercksky KE, Skotheim RI, Lothe RA. Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses. Mol Cancer. 2007;6:2. doi: 10.1186/1476-4598-6-2. - DOI - PMC - PubMed
    1. Solmi R, Ugolini G, Rosati G, Zanotti S, Lauriola M, Montroni I, del Governatore M, Caira A, Taffurelli M, Santini D, Coppola D, Guidotti L, Carinci P, Strippoli P. Microarray-based identification and RT-PCR test screening for epithelial-specific mRNAs in peripheral blood of patients with colon cancer. BMC Cancer. 2006;6:250. doi: 10.1186/1471-2407-6-250. - DOI - PMC - PubMed

MeSH terms