Population description and its role in the interpretation of genetic association
- PMID: 20157827
- PMCID: PMC2864578
- DOI: 10.1007/s00439-010-0800-0
Population description and its role in the interpretation of genetic association
Abstract
Despite calls for greater clarity and precision of population description, studies have documented persistent ambiguity in the use of race/ethnicity terms in genetic research. It is unclear why investigators tolerate such ambiguity, or what effect these practices have on the evaluation of reported associations. To explore the way that population description is used to replicate and/or extend previously reported genetic observations, we examined articles describing the association of the peroxisome proliferator-activated receptor-gamma-gamma Pro12Ala polymorphism with type 2 diabetes mellitus and related phenotypes, published between 1997 and 2005. The 80 articles identified were subjected to a detailed content analysis to determine (1) how sampled populations were described, (2) whether and how the choice of sample was explained, and (3) how the allele frequency and genetic association findings identified were contextualized and interpreted. In common with previous reports, we observed a variety of sample descriptions and little explanation for the choice of population investigated. Samples of European origin were typically described with greater specificity than samples of other origin. However, findings from European samples were nearly always compared to samples described as "Caucasian" and sometimes generalized to all Caucasians or to all humans. These findings suggest that care with population description, while important, may not fully address analytical concerns regarding the interpretation of variable study outcomes or ethical concerns regarding the attribution of genetic observations to broad social groups. Instead, criteria which help investigators better distinguish justified and unjustified forms of population generalization may be required.
References
-
- Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, Groop L, Lander ES. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76–80. - PubMed
-
- . Census, race and science. Nat Genet. 2000;24(2):97–98. - PubMed
-
- . The unexamined ‘Caucasian’. Nat Genet. 2004;36(6):541. - PubMed
-
- Caulfield T, Fullerton SM, Ali-Khan SE, Arbour L, Burchard EG, Cooper RS, Hardy BJ, Harry S, Hyde-Lay R, Kahn J, Kittles R, Koenig BA, Lee SS, Malinowski M, Ravitsky V, Sankar P, Scherer SW, Seguin B, Shickle D, Suarez-Kurtz G, Daar AS. Race and ancestry in biomedical research: exploring the challenges. Genome Med. 2009;1(1):8. - PMC - PubMed
-
- Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P, Fraumeni JF, Jr, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins FS. Replicating genotype–phenotype associations. Nature. 2007;447(7145):655–660. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical