Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 5;9(4):1882-93.
doi: 10.1021/pr901044x.

Identification of a novel family of snake venom proteins Veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach

Affiliations

Identification of a novel family of snake venom proteins Veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach

G OmPraba et al. J Proteome Res. .

Abstract

Cerberus rynchops (dog-faced water snake) belongs to Homalopsidae of Colubroidea (rear-fanged snakes). So far, venom compositions of snakes of the Homalopsidae family are not known. To determine the venom composition of C. rynchops, we have used both transcriptomics and proteomics approaches. The venom gland transcriptome revealed 104 ESTs and the presence of three known snake protein families, namely, metalloprotease, CRISP, and C-type lectin. In addition, we identified two proteins that showed sequence homology to ficolin, a mammalian protein with collagen-like and fibrinogen-like domains. We named them as ryncolin 1 and ryncolin 2 (rynchops ficolin) and this new family of snake venom proteins as veficolins (venom ficolins). On the basis of its structural similarity to ficolin, we speculate that ryncolins may induce platelet aggregation and/or initiate complement activation. To determine the proteome, the whole C. rynchops venom was trypsinized and fractionated by reverse phase HPLC followed by MALDI-MS/MS analysis of the tryptic peptides. Analysis of the tandem mass spectrometric data indicated the presence of all protein families compared to the translated cDNA library. Overall, our combined approach of transcriptomics and proteomics revealed that C. rynchops venom is among the least complex snake venom characterized to date despite the presence of a new family of snake venom proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources