Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;9(3):661-72.
doi: 10.1158/1535-7163.MCT-09-1144. Epub 2010 Feb 16.

The FLT3 internal tandem duplication mutation is a secondary target of the aurora B kinase inhibitor AZD1152-HQPA in acute myelogenous leukemia cells

Affiliations

The FLT3 internal tandem duplication mutation is a secondary target of the aurora B kinase inhibitor AZD1152-HQPA in acute myelogenous leukemia cells

Martin Grundy et al. Mol Cancer Ther. 2010 Mar.

Abstract

Aurora kinases play an essential role in orchestrating chromosome alignment, segregation, and cytokinesis during mitotic progression and both aurora-A and B are frequently overexpressed in a variety of human malignancies. In this study, we report the effects of AZD1152-HQPA, a highly selective inhibitor of aurora-B kinase, in acute myeloid leukemia (AML) cell lines and primary samples. We show that AZD1152-HQPA inhibits the phosphorylation of Histone H3 (pHH3) on serine 10 resulting in polyploid cells, apoptosis, and loss of viability in a panel of AML cell lines. We also show that AZD1152-HQPA sensitivity in our cell lines is irrespective of p53 status and the FLT3-ITD-expressing MOLM-13 and MV4-11 cell lines are particularly sensitive to AZD1152-HQPA. Internal tandem duplications (ITD) within the FLT3 tyrosine kinase receptor are found in approximately 25% of AML patients and are associated with a poor prognosis. Here, we report that AZD1152-HQPA directly targets phosphorylated FLT3 along with inhibiting its downstream target phospho-signal transducer and activator of transcription 5 (STAT5) in the FLT3-ITD cell lines. We show pHH3 expression in primary AML blasts and its inhibition by AZD1152-HQPA at low doses in all of our primary samples tested. AZD1152-HQPA inhibits the clonogenic potential of primary AML samples, with FLT3-ITD samples being the most sensitive (P = 0.029). FLT3-ITD primary samples are also more sensitive to pHH3 inhibition (P = 0.022) and are particularly sensitive to pSTAT5 downregulation after treatment with AZD1152-HQPA compared with FLT3 wild-type samples (P = 0.007). We conclude that mutant FLT3 is a secondary target of AZD1152-HQPA and that FLT3-ITD primary samples are particularly sensitive to the drug.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms