Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar 1;9(5):995-1004.
doi: 10.4161/cc.9.5.10935. Epub 2010 Mar 14.

Chk1 inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase

Affiliations

Chk1 inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase

Samuel McNeely et al. Cell Cycle. .

Abstract

Checkpoint kinase 1 (Chk1) regulates cell cycle checkpoints and DNA damage repair in response to genotoxic stress. Inhibition of Chk1 is an emerging strategy for potentiating the cytotoxicity of chemotherapeutic drugs. Here, we demonstrate that AZD7762, an ATP -competitive Chk1/2 inhibitor induces gammaH2AX in gemcitabine-treated cells by altering both dynamics and stability of replication forks, allowing the firing of suppressed replication origins as measured by DNA fiber combing and causing a dramatic increase in DNA breaks as measured by comet assay. Furthermore, we identify ATM and DNA-PK, rather than ATR, as the kinases mediating gammaH2AX induction, suggesting AZD7762 converts stalled forks into double strand breaks (DSBs). Consistent with DSB formation upon fork collapse, cells deficient in DSB repair by lack of BRCA2, XRCC3 or DNA-PK were selectively more sensitive to combined AZD7762 and gemcitabine. Checkpoint abrogation by AZD7762 also caused premature mitosis in gemcitabine-treated cells arrested in G(1)/early S-phase. Prevention of premature mitotic entry via Cdk1 siRNA knockdown suppressed apoptosis. These results demonstrate that chemosensitization of gemcitabine by Chk1 inhibition results from at least three cellular events, namely, activation of origin firing, destabilization of stalled replication forks and entry of cells with damaged DNA into lethal mitosis. Additionally, the current study indicates that the combination of Chk1 inhibitor and gemcitabine may be particularly effective in targeting tumors with specific DNA repair defects.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources