Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar 1;9(5):880-5.
doi: 10.4161/cc.9.5.10827. Epub 2010 Mar 2.

Human iPS cell-based therapy: considerations before clinical applications

Affiliations
Review

Human iPS cell-based therapy: considerations before clinical applications

Ning Sun et al. Cell Cycle. .

Abstract

Generation of induced pluripotent stem (iPS) cells has revolutionized the field of regenerative medicine. With the exponential increase in iPS cell research in the past three years, human iPS cells have been derived with different technologies and from various cell types. From a translational perspective, however, a number of issues must be addressed before safe and high quality patient-specific iPS cells can be derived for clinical applications. In addition, iPS cell-based therapies also need to be thoroughly evaluated in pre-clinical animal models before they can be applied to human subjects.

PubMed Disclaimer

Figures

Figure 1
Figure 1. The idea of iPS cell-based regenerative therapy
There remain significant hurdles to be overcome in each step, from iPS cell derivation to pre-clinical trials, before iPS cell-based clinical applications can become a reality. SF, skin fibroblasts; Kera, keratinocytes; CD34+, CD34+ cells from peripheral blood; ASC, adipose stem cell; CB, cord blood cell; Endo, endoderm; Meso, mesoderm; Ecto, ectoderm.

Similar articles

Cited by

References

    1. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72. - PubMed
    1. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20. - PubMed
    1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. - PubMed
    1. Park IH, Lerou PH, Zhao R, Huo H, Daley GQ. Generation of human-induced pluripotent stem cells. Nat Protoc. 2008;3:1180–6. - PubMed
    1. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451:141–6. - PubMed

Publication types

MeSH terms

LinkOut - more resources