Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;34(4):402-6.
doi: 10.1097/SHK.0b013e3181d492e4.

Recombinant thrombomodulin prevents heatstroke by inhibition of high-mobility group box 1 protein in sera of rats

Affiliations

Recombinant thrombomodulin prevents heatstroke by inhibition of high-mobility group box 1 protein in sera of rats

Satoshi Hagiwara et al. Shock. 2010 Oct.

Abstract

Heatstroke, a severe inflammatory response disease, is a medical emergency characterized by high body temperature. The protein C anticoagulant system inhibits inflammation resulting from various causes. Thrombomodulin (TM), a widely expressed glycoprotein originally identified in vascular endothelium, is an important cofactor in the protein C anticoagulant system. We tested the hypothesis that TM could prevent acute inflammation induced by heat stress in a rodent model. Male Wistar rats received a bolus of 1 mg x kg of body weight of TM or saline injected into the tail vein, followed by heat-stress treatment (exposure to 42°C for 30 min). Serum concentrations of cytokines (IL-1β, IL-6, and TNF-α), NO, and high-mobility group box 1 (HMGB1) protein were measured at various time points after treatment. We observed a decrease in the levels of cytokines and HMGB1 protein in sera of TM-treated animals over time. Inhibition of NO overproduction by recombinant TM was observed during heat stress-induced inflammation. Because of the decline in inflammatory marker levels, TM ameliorated injury to various organs in the rat model of heat stress-induced acute inflammation. As TM exhibited a strong anti-inflammatory effect in a rat model of acute inflammation induced by heat stress, TM represents a potential therapeutic for heatstroke prevention or management in patients.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources