Computational delineation of the catalytic step of a high-fidelity DNA polymerase
- PMID: 20162624
- PMCID: PMC2867021
- DOI: 10.1002/pro.361
Computational delineation of the catalytic step of a high-fidelity DNA polymerase
Abstract
The Bacillus fragment, belonging to a class of high-fidelity polymerases, demonstrates high processivity (adding approximately 115 bases per DNA binding event) and exceptional accuracy (1 error in 10(6) nucleotide incorporations) during DNA replication. We present analysis of structural rearrangements and energetics just before and during the chemical step (phosphodiester bond formation) using a combination of classical molecular dynamics, mixed quantum mechanics molecular mechanics simulations, and free energy computations. We find that the reaction is associative, proceeding via the two-metal-ion mechanism, and requiring the proton on the terminal primer O3' to transfer to the pyrophosphate tail of the incoming nucleotide before the formation of the pentacovalent transition state. Different protonation states for key active site residues direct the system to alternative pathways of catalysis and we estimate a free energy barrier of approximately 12 kcal/mol for the chemical step. We propose that the protonation of a highly conserved catalytic aspartic acid residue is essential for the high processivity demonstrated by the enzyme and suggest that global motions could be part of the reaction free energy landscape.
Figures





Similar articles
-
Quantum mechanics/molecular mechanics investigation of the chemical reaction in Dpo4 reveals water-dependent pathways and requirements for active site reorganization.J Am Chem Soc. 2008 Oct 8;130(40):13240-50. doi: 10.1021/ja802215c. Epub 2008 Sep 12. J Am Chem Soc. 2008. PMID: 18785738 Free PMC article.
-
Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase.J Am Chem Soc. 2003 Jul 9;125(27):8163-77. doi: 10.1021/ja028997o. J Am Chem Soc. 2003. PMID: 12837086
-
A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase beta.J Phys Chem B. 2007 Sep 27;111(38):11244-52. doi: 10.1021/jp071838c. Epub 2007 Sep 1. J Phys Chem B. 2007. PMID: 17764165
-
Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion.Chem Rev. 2018 Jun 27;118(12):6000-6025. doi: 10.1021/acs.chemrev.7b00685. Epub 2018 Jun 4. Chem Rev. 2018. PMID: 29863852 Review.
-
Getting a grip: polymerases and their substrate complexes.Curr Opin Struct Biol. 1999 Feb;9(1):21-8. doi: 10.1016/s0959-440x(99)80004-9. Curr Opin Struct Biol. 1999. PMID: 10047577 Review.
Cited by
-
In crystallo observation of active site dynamics and transient metal ion binding within DNA polymerases.Struct Dyn. 2023 Jun 15;10(3):034702. doi: 10.1063/4.0000187. eCollection 2023 May. Struct Dyn. 2023. PMID: 37333512 Free PMC article.
-
Quantum and all-atom molecular dynamics simulations of protonation and divalent ion binding to phosphatidylinositol 4,5-bisphosphate (PIP2).J Phys Chem B. 2013 Jul 18;117(28):8322-9. doi: 10.1021/jp401414y. Epub 2013 Jul 3. J Phys Chem B. 2013. PMID: 23786273 Free PMC article.
-
Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations.J Am Chem Soc. 2011 Jun 15;133(23):8934-41. doi: 10.1021/ja200173a. Epub 2011 May 24. J Am Chem Soc. 2011. PMID: 21539371 Free PMC article.
-
C(α) torsion angles as a flexible criterion to extract secrets from a molecular dynamics simulation.J Mol Model. 2014 Apr;20(4):2196. doi: 10.1007/s00894-014-2196-6. Epub 2014 Apr 12. J Mol Model. 2014. PMID: 24728650
-
Conformational coupling, bridge helix dynamics and active site dehydration in catalysis by RNA polymerase.Biochim Biophys Acta. 2010 Aug;1799(8):575-87. doi: 10.1016/j.bbagrm.2010.05.002. Epub 2010 May 15. Biochim Biophys Acta. 2010. PMID: 20478425 Free PMC article.
References
-
- Friedberg EC. DNA damage and repair. Nature. 2003;421:436–439. - PubMed
-
- Koshland DE. The key-lock theory and the induced fit theory. Angew Chem Int Ed. 1995;33:2375–2378.
-
- Joyce CM, Benkovic SJ. DNA polymerase fidelity: kinetics, structure, and checkpoints. Biochemistry. 2004;43:14317–14324. - PubMed
-
- Joyce CM, Steitz TA. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 1994;63:777–822. - PubMed
-
- Kiefer JR, Mao C, Braman JC, Beese LS. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature. 1998;391:304–307. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources