Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Sep;31(5):716-56.
doi: 10.1002/med.20201. Epub 2010 Feb 16.

Nanoparticulate devices for brain drug delivery

Affiliations
Review

Nanoparticulate devices for brain drug delivery

Christian Celia et al. Med Res Rev. 2011 Sep.

Abstract

The blood-brain barrier (BBB) limits the transport of therapeutic molecules from the blood compartment into the brain, thus greatly reducing the species of therapeutic compounds that can be efficiently accumulated in the central nervous system (CNS). Various strategies have been proposed for improving the delivery of drugs to this tissue, and numerous invasive and noninvasive methods have been proposed by different scientists in an attempt to circumvent the BBB and to increase the delivery of drug compounds into the brain. An interesting alternative, in the solution of this problem and also that of reaching a suitable target in the CNS, has recently been provided through the use of nanoparticulate colloidal devices as a noninvasive technique for brain drug delivery. These systems offer diverse advantages over invasive strategies, because (1) they are designed using biocompatible and biodegradable materials; (2) they avoid the disruption and/or modification of the BBB; and (3) they modulate the biopharmaceutical properties of the entrapped drugs. Moreover, the possibility of targeting specific brain tissue, thanks to ligands linked to the surface of the nanoparticulate colloidal devices, confers the necessary characteristics for the treatment of CNS pathologies to these drug carriers. The aim of this review is to focus on describing the main strategies in use for designing nanoparticulate colloidal devices for CNS delivery, their potentiality as noninvasive strategies in the delivery of drugs to the cerebral tissues, and their biological and clinical applications in cerebral drug delivery.

Keywords: blood-brain barrier; drug delivery systems; polymeric nanoparticles; solid lipid nanoparticles.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources