Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan;109(1):89-98.

Identification of a membrane protein responsible for ribosome binding in rough microsomal membranes

Affiliations
  • PMID: 2016278
Free article

Identification of a membrane protein responsible for ribosome binding in rough microsomal membranes

S Tazawa et al. J Biochem. 1991 Jan.
Free article

Abstract

A membrane protein fraction was obtained from rat liver rough microsomes by affinity chromatography on a concanavalin A-Sepharose column and then a chelating-Sepharose column. This protein fraction comprised about 2% of the total membrane proteins of rough microsomes and the ribosome-binding activity of ribosome-stripped rough microsomes was predominantly found in this protein fraction, as determined with a liposome assay system. To identify the essential components responsible for the ribosome binding, two approaches were employed. Trypsin treatment of liposomes reconstituted with this protein fraction resulted in the loss of the ribosome-binding activity in parallel with the loss of a dominant band, estimated Mr 34,000, in SDS-polyacrylamide gels. Next, the direct interaction between the binding sites on the membrane of reconstituted liposomes and 60S ribosomal subunits was investigated by photocrosslinking using sulfosuccinimidyl 2-(m-azido-o-nitrobenzamido)-ethyl-1,3'-dithiopropionate (SAND). The photocrosslinked complex was formed between 60S ribosomal subunits pretreated with SAND and binding-site proteins on the membrane of the liposomes. Then, after the liposomes were solubilized, the complex was isolated by sucrose gradient centrifugation of the binding mixture. The crosslinked proteins were released from 60S ribosomal subunits by cleavage of of crosslinks with beta-ME and analyzed by SDS-polyacrylamide gel electrophoresis and 125I-autoradiography. The 34-kDa protein (p34) was the predominant component that crosslinked to the 60S ribosomal subunits and was found in proportion to the amount of 60S ribosomal subunits added to the system. The p34 was distinguishable by immunoblot analysis from urate oxidase, which is the 34-kDa protein of peroxisomal cores contaminating rough microsomes. These results suggest that the present p34 is a likely candidate molecule for the ribosome-binding activity of rough microsomes.

PubMed Disclaimer

Similar articles

Cited by