Biosynthesis of mannosylinositolphosphoceramide in Saccharomyces cerevisiae is dependent on genes controlling the flow of secretory vesicles from the endoplasmic reticulum to the Golgi
- PMID: 2016333
- PMCID: PMC2288964
- DOI: 10.1083/jcb.113.3.515
Biosynthesis of mannosylinositolphosphoceramide in Saccharomyces cerevisiae is dependent on genes controlling the flow of secretory vesicles from the endoplasmic reticulum to the Golgi
Abstract
Saccharomyces cerevisiae contains several abundant phosphoinositol-containing sphingolipids, namely inositolphosphoceramides (IPCs), mannosyl-inositolphosphoceramide (MIPC), which is substituted on the headgroup with an additional mannose, and M(IP)2C, a ceramide substituted with one mannose and two phosphoinositol groups. Using well-defined temperature-sensitive secretion mutants we demonstrate that the biosynthesis of MIPC, M(IP)2C, and a subclass if IPCs is dependent on genes that are required for the vesicular transport of proteins from the ER to the Golgi. Synthesis of these lipids in intact cells is dependent on metabolic energy. A likely but tentative interpretation of the data is that the biosynthesis of these sphingolipids is restricted to the Golgi apparatus, and that one or more substrates for the biosynthesis of these sphingolipids (phosphatidylinositol, IPCs, or MIPC) are delivered to the Golgi apparatus by an obligatory vesicular transport step. Alternative models to explain the data are also discussed.
Similar articles
-
Protein sorting in the late Golgi of Saccharomyces cerevisiae does not require mannosylated sphingolipids.J Biol Chem. 2004 Jan 9;279(2):1020-9. doi: 10.1074/jbc.M306119200. Epub 2003 Oct 28. J Biol Chem. 2004. PMID: 14583628
-
Intracellular transport of inositol-containing sphingolipids in the yeast, Saccharomyces cerevisiae.FEBS Lett. 1995 Jun 26;367(2):201-4. doi: 10.1016/0014-5793(95)00567-s. FEBS Lett. 1995. PMID: 7796921
-
Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast.J Cell Biol. 2001 Dec 10;155(6):949-59. doi: 10.1083/jcb.200105033. Epub 2001 Dec 3. J Cell Biol. 2001. PMID: 11733544 Free PMC article.
-
Phospholipid-transfer proteins.Curr Opin Cell Biol. 1991 Aug;3(4):621-5. doi: 10.1016/0955-0674(91)90032-t. Curr Opin Cell Biol. 1991. PMID: 1772656 Review. No abstract available.
-
The complexity of sphingolipid biosynthesis in the endoplasmic reticulum.Biochim Biophys Acta. 2013 Nov;1833(11):2511-8. doi: 10.1016/j.bbamcr.2013.04.010. Epub 2013 Apr 20. Biochim Biophys Acta. 2013. PMID: 23611790 Review.
Cited by
-
The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.Microbiol Rev. 1995 Jun;59(2):304-22. doi: 10.1128/mr.59.2.304-322.1995. Microbiol Rev. 1995. PMID: 7603412 Free PMC article. Review.
-
Following the flux of long-chain bases through the sphingolipid pathway in vivo using mass spectrometry.J Lipid Res. 2016 May;57(5):906-15. doi: 10.1194/jlr.D066472. Epub 2016 Mar 14. J Lipid Res. 2016. PMID: 26977056 Free PMC article.
-
Protocol for measuring sphingolipid metabolism in budding yeast.STAR Protoc. 2021 Apr 10;2(2):100412. doi: 10.1016/j.xpro.2021.100412. eCollection 2021 Jun 18. STAR Protoc. 2021. PMID: 33912844 Free PMC article.
-
The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases.Biochem J. 2003 May 1;371(Pt 3):1013-9. doi: 10.1042/BJ20021834. Biochem J. 2003. PMID: 12578562 Free PMC article.
-
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane.J Cell Biol. 1999 Aug 23;146(4):741-54. doi: 10.1083/jcb.146.4.741. J Cell Biol. 1999. PMID: 10459010 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases