Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level
- PMID: 20164271
- PMCID: PMC2849558
- DOI: 10.1128/JCM.01881-09
Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level
Abstract
Bacterial identification relies primarily on culture-based methodologies requiring 24 h for isolation and an additional 24 to 48 h for species identification. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is an emerging technology newly applied to the problem of bacterial species identification. We evaluated two MALDI-TOF MS systems with 720 consecutively isolated bacterial colonies under routine clinical laboratory conditions. Isolates were analyzed in parallel on both devices, using the manufacturers' default recommendations. We compared MS with conventional biochemical test system identifications. Discordant results were resolved with "gold standard" 16S rRNA gene sequencing. The first MS system (Bruker) gave high-confidence identifications for 680 isolates, of which 674 (99.1%) were correct; the second MS system (Shimadzu) gave high-confidence identifications for 639 isolates, of which 635 (99.4%) were correct. Had MS been used for initial testing and biochemical identification used only in the absence of high-confidence MS identifications, the laboratory would have saved approximately US$5 per isolate in marginal costs and reduced average turnaround time by more than an 8-h shift, with no loss in accuracy. Our data suggest that implementation of MS as a first test strategy for one-step species identification would improve timeliness and reduce isolate identification costs in clinical bacteriology laboratories now.
Figures


References
-
- Arnold, R. J., J. A. Karty, A. D. Ellington, and J. P. Reilly. 1999. Monitoring the growth of a bacteria culture by MALDI-MS of whole cells. Anal. Chem. 71:1990-1996. - PubMed
-
- Bosshard, P. P., R. Zbinden, S. Abels, B. Boddinghaus, M. Altwegg, and E. C. Bottger. 2006. 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting Gram-negative bacteria in the clinical laboratory. J. Clin. Microbiol. 44:1359-1366. - PMC - PubMed
-
- Cherkaoui, A., S. Emonet, D. Ceroni, B. Candolfi, J. Hibbs, P. Francois, and J. Schrenzel. 2009. Development and validation of a modified broad-range 16S rDNA PCR for diagnostic purposes in clinical microbiology. J. Microbiol. Methods 79:227-231. - PubMed
-
- Couzinet, S., C. Jay, C. Barras, R. Vachon, G. Vernet, B. Ninet, I. Jan, M. A. Minazio, P. Francois, D. Lew, A. Troesch, and J. Schrenzel. 2005. High-density DNA probe arrays for identification of staphylococci to the species level. J. Microbiol. Methods 61:201-208. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical