Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2010 Apr;91(4):966-75.
doi: 10.3945/ajcn.2009.28406. Epub 2010 Feb 17.

Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults

Affiliations
Free article
Randomized Controlled Trial

Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults

Tina Akhavan et al. Am J Clin Nutr. 2010 Apr.
Free article

Abstract

Background: Dairy protein ingestion before a meal reduces food intake and, when consumed with carbohydrate, reduces blood glucose.

Objective: The objective was to describe the effect of whey protein (WP) or its hydrolysate (WPH) when consumed before a meal on food intake, pre- and postmeal satiety, and concentrations of blood glucose and insulin in healthy young adults.

Design: Two randomized crossover studies were conducted. WP (10-40 g) in 300 mL water was provided in experiment 1, and WP (5-40 g) and WPH (10 g) in 300 mL water were provided in experiment 2. At 30 min after consumption, the subjects were fed an ad libitum pizza meal (experiment 1) or a preset pizza meal (12 kcal/kg, experiment 2). Satiety, blood glucose, and insulin were measured at baseline and at intervals both before and after the meals.

Results: In experiment 1, 20-40 g WP suppressed food intake (P < 0.0001) and 10-40 g WP reduced postmeal blood glucose concentrations and the area under the curve (AUC) (P < 0.05). In experiment 2, 10-40 g WP, but not WPH, reduced postmeal blood glucose AUC and insulin AUC in a dose-dependent manner (P < 0.05). The ratio of cumulative blood glucose to insulin AUCs (0-170 min) was reduced by > or =10 g WP but not by 10 g WPH.

Conclusions: WP consumed before a meal reduces food intake, postmeal blood glucose and insulin, and the ratio of cumulative blood glucose to insulin AUCs in a dose-dependent manner. Intact WP, but not WPH, contributes to blood glucose control by both insulin-dependent and insulin-independent mechanisms. This trial was registered at clinicaltrials.gov as NCT00988377 and NCT00988182.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources