Stochastic transitions between neural states in taste processing and decision-making
- PMID: 20164341
- PMCID: PMC2851230
- DOI: 10.1523/JNEUROSCI.3047-09.2010
Stochastic transitions between neural states in taste processing and decision-making
Abstract
Noise, which is ubiquitous in the nervous system, causes trial-to-trial variability in the neural responses to stimuli. This neural variability is in turn a likely source of behavioral variability. Using Hidden Markov modeling, a method of analysis that can make use of such trial-to-trial response variability, we have uncovered sequences of discrete states of neural activity in gustatory cortex during taste processing. Here, we advance our understanding of these patterns in two ways. First, we reproduce the experimental findings in a formal model, describing a network that evinces sharp transitions between discrete states that are deterministically stable given sufficient noise in the network; as in the empirical data, the transitions occur at variable times across trials, but the stimulus-specific sequence is itself reliable. Second, we demonstrate that such noise-induced transitions between discrete states can be computationally advantageous in a reduced, decision-making network. The reduced network produces binary outputs, which represent classification of ingested substances as palatable or nonpalatable, and the corresponding behavioral responses of "spit" or "swallow". We evaluate the performance of the network by measuring how reliably its outputs follow small biases in the strengths of its inputs. We compare two modes of operation: deterministic integration ("ramping") versus stochastic decision-making ("jumping"), the latter of which relies on state-to-state transitions. We find that the stochastic mode of operation can be optimal under typical levels of internal noise and that, within this mode, addition of random noise to each input can improve optimal performance when decisions must be made in limited time.
Figures
References
-
- Aksay E, Baker R, Seung HS, Tank DW. Anatomy and discharge properties of pre-motor neurons in the goldfish medulla that have eye-position signals during fixations. J Neurophysiol. 2000;84:1035–1049. - PubMed
-
- Brunel N, Wang XJ. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci. 2001;11:63–85. - PubMed
-
- Deco G, Romo R. The role of fluctuations in perception. Trends Neurosci. 2008;31:591–598. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources