Analysis of particulate contaminations of infusion solutions in a pediatric intensive care unit
- PMID: 20165942
- PMCID: PMC2837187
- DOI: 10.1007/s00134-010-1775-y
Analysis of particulate contaminations of infusion solutions in a pediatric intensive care unit
Abstract
Purpose: To examine the physical properties and chemical composition of particles captured by in-line microfilters in critically ill children, and to investigate the inflammatory and cytotoxic effects of particles on endothelial cells (HUVEC) and macrophages in vitro.
Methods: Prospective, observational study of microfilters following their use in the pediatric intensive care unit. In vitro model utilizing cytokine assays to investigate the effects of particles on human endothelial cells and murine macrophages.
Results: Twenty filter membranes from nine patients and five controls were examined by electron microscopy (EM) and energy dispersion spectroscopy (EDX). The average number of particles found on the surface of the used membranes was 550 cm(2). EDX analysis confirmed silicon as a major particle constituent. Half of the filter membranes showed conglomerates containing an unaccountable number of smaller particles. In vitro, glass particles were used to mimic the high silicon content particles. HUVEC and murine macrophages were exposed to different contents of particles, and cytokine levels were assayed to assess their immune response. Levels of interleukin-1beta, interleukin-6, interleukin-8, and tumor necrosis factor alpha were suppressed.
Conclusions: Particle contamination of infusion solutions exists despite a stringent infusion regiment. The number and composition of particles depends on the complexity of the applied admixtures. Beyond possible physical effects, the suppression of macrophage and endothelial cell cytokine secretion in vitro suggests that microparticle infusion in vivo may have immune-modulating effects. Further clinical trials are necessary to determine whether particle retention by in-line filtration has an influence on the outcome of intensive care patients.
Figures


Similar articles
-
In-line Filtration Decreases Systemic Inflammatory Response Syndrome, Renal and Hematologic Dysfunction in Pediatric Cardiac Intensive Care Patients.Pediatr Cardiol. 2015 Aug;36(6):1270-8. doi: 10.1007/s00246-015-1157-x. Epub 2015 Apr 7. Pediatr Cardiol. 2015. PMID: 25845941 Free PMC article. Clinical Trial.
-
[Particulate contamination of infusion solutions and drug additives within the scope of long-term intensive therapy. 1. Energy dispersion electron images in the scanning electron microscope-REM/EDX].Anaesthesist. 1989 Oct;38(10):544-8. Anaesthesist. 1989. PMID: 2511778 German.
-
Effectiveness of in-Line Filters to Completely Remove Particulate Contamination During a Pediatric Multidrug Infusion Protocol.Sci Rep. 2018 May 16;8(1):7714. doi: 10.1038/s41598-018-25602-6. Sci Rep. 2018. PMID: 29769547 Free PMC article.
-
[Use of microfilters within the scope of infusion therapy].Infusionsther Transfusionsmed. 1994 Feb;21(1):42-51. Infusionsther Transfusionsmed. 1994. PMID: 8173311 Review. German.
-
[Microfilters within the scope of infusion therapy--possibilities and problems in retention of microbial and particle contaminants].Zentralbl Chir. 1994;119(4):268-75. Zentralbl Chir. 1994. PMID: 8203178 Review. German.
Cited by
-
Exploring a case of incompatibility in a complex regimen containing Plasma-Lyte 148 in the pediatric intensive care.Paediatr Anaesth. 2023 Mar;33(3):211-218. doi: 10.1111/pan.14598. Epub 2022 Nov 21. Paediatr Anaesth. 2023. PMID: 36336980 Free PMC article.
-
Endothelial Cell Toxicity of Vancomycin Infusion Combined with Other Antibiotics.Antimicrob Agents Chemother. 2015 Aug;59(8):4901-6. doi: 10.1128/AAC.00612-15. Epub 2015 Jun 8. Antimicrob Agents Chemother. 2015. PMID: 26055373 Free PMC article.
-
Influence of vancomycin infusion methods on endothelial cell toxicity.Antimicrob Agents Chemother. 2015 Feb;59(2):930-4. doi: 10.1128/AAC.03694-14. Epub 2014 Nov 24. Antimicrob Agents Chemother. 2015. PMID: 25421476 Free PMC article.
-
Strategies to prevent drug incompatibility during simultaneous multi-drug infusion in intensive care units: a literature review.Eur J Clin Pharmacol. 2021 Sep;77(9):1309-1321. doi: 10.1007/s00228-021-03112-1. Epub 2021 Mar 25. Eur J Clin Pharmacol. 2021. PMID: 33768303 Review.
-
Visible particles in parenteral drug products: A review of current safety assessment practice.Curr Res Toxicol. 2024 Jun 9;7:100175. doi: 10.1016/j.crtox.2024.100175. eCollection 2024. Curr Res Toxicol. 2024. PMID: 38975062 Free PMC article.
References
-
- Mehrkens HH, Klaus E, Schmitz JE. Possibilities of material contamination due to additional injections. Klin Anasthesiol Intensivther. 1977;14:106–113. - PubMed
-
- Walpot H, Franke RP, Burchard WG, Agternkamp C, Müller FG, Mittermayer C, Kalff G. Particulate contamination of infusion solutions and drug additives within the scope of long-term intensive therapy. 1: Energy dispersion electron images in the scanning electron microscope-REM/EDX. Anaesthesist. 1989;38:544–548. - PubMed
-
- Walpot H, Franke RP, Burchard WG, Agternkamp C, Müller FG, Mittermayer C, Kalff G. Particulate contamination of infusion solutions and drug additives in the framework of long-term intensive therapy. 2: An animal model. Anaesthesist. 1989;38:617–621. - PubMed
-
- Lehr HA, Brunner J, Rangoonwala R, Kirkpatrick CJ. Particulate matter contamination of intravenous antibiotics aggravates loss of functional capillary density in postischemic striated muscle. Am J Respir Crit Care Med. 2002;165:514–520. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources