Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2010 Jan 1;4(1):119-22.
doi: 10.1177/193229681000400115.

The accuracy of a new real-time continuous glucose monitoring algorithm: an analysis

Affiliations
Comment

The accuracy of a new real-time continuous glucose monitoring algorithm: an analysis

Boris Kovatchev et al. J Diabetes Sci Technol. .

Abstract

In this issue of Journal of Diabetes Science and Technology, Keenan and colleagues used archival data from the STAR 1 clinical trial (Medtronic Diabetes) to support the claim that the new Veo calibration algorithm improves the accuracy of continuous glucose monitoring, particularly in the critical hypoglycemic range. Extensive data analyses are presented to support this claim; the results are convincing, and the estimated improvement in hypoglycemic detection from 55% for the standard calibration to 82% for the Veo is particularly impressive. We can therefore conclude that the Veo algorithm has the potential to improve the accuracy of hypoglycemia alarms and ultimately contribute to closed-loop control. However, the presented results should be interpreted cautiously because they are based on retrospective analysis and are heavily dependent on the distribution of blood glucose levels observed in a particular data set.

PubMed Disclaimer

Comment on

Similar articles

Cited by

References

    1. Deiss D, Bolinder J, Riveline JP, Battelino T, Bosi E, Tubiana-Rufi N, Kerr D, Phillip M. Improved glycemic control in poorly controlled patients with type 1 diabetes using real-time continuous glucose monitoring. Diabetes Care. 2006;29(12):2730–2732. - PubMed
    1. Garg S, Zisser H, Schwartz S, Bailey T, Kaplan R, Ellis S, Jovanovic L. Improvement in glycemic excursions with a trans-cutaneous, real-time continuous glucose sensor: a randomized controlled trial. Diabetes Care. 2006;29(1):44–50. - PubMed
    1. Tamborlane WV, Beck RW, Bode BW, Buckingham B, Chase HP, Clemons R, Fiallo-Scharer R, Fox LA, Gilliam LK, Hirsch IB, Huang ES, Kollman C, Kowalski AJ, Laffel L, Lawrence JM, Lee J, Mauras N, O'Grady M, Ruedy KJ, Tansey M, Tsalikian E, Weinzimer S, Wilson DM, Wolpert H, Wysocki T, Xing D The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;359(14):1464–1476. - PubMed
    1. Klonoff DC. Continuous glucose monitoring: roadmap for 21st century diabetes therapy. Diabetes Care. 2005;28(5):1231–1239. - PubMed
    1. Hirsch IB, Armstrong D, Bergenstal RM, Buckingham B, Childs BP, Clarke WL, Peters A, Wolpert H. Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM) Diabetes Technol Ther. 2008;10(4):232–246. - PubMed

Publication types

MeSH terms