Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;108(5):1224-33.
doi: 10.1152/japplphysiol.01202.2009. Epub 2010 Feb 18.

Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run

Affiliations
Free article

Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run

Vincent Martin et al. J Appl Physiol (1985). 2010 May.
Free article

Abstract

This experiment investigated the fatigue induced by a 24-h running exercise (24TR) and particularly aimed at testing the hypothesis that the central component would be the main mechanism responsible for neuromuscular fatigue. Neuromuscular function evaluation was performed before, every 4 h during, and at the end of the 24TR on 12 experienced ultramarathon runners. It consisted of a determination of the maximal voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), the maximal voluntary activation (%VA) of the KE and PF, and the maximal compound muscle action potential amplitude (Mmax) on the soleus and vastus lateralis. Tetanic stimulations also were delivered to evaluate the presence of low-frequency fatigue and the KE maximal muscle force production ability. Strength loss occurred throughout the exercise, with large changes observed after 24TR in MVC for both the KE and PF muscles (-40.9+/-17.0 and -30.3+/-12.5%, respectively; P<0.001) together with marked reductions of %VA (-33.0+/-21.8 and -14.8+/-18.9%, respectively; P<0.001). A reduction of Mmax amplitude was observed only on soleus, and no low-frequency fatigue was observed for any muscle group. Finally, KE maximal force production ability was reduced to a moderate extent at the end of the 24TR (-10.2%; P<0.001), but these alterations were highly variable (+/-15.7%). These results suggest that central factors are mainly responsible for the large maximal muscle torque reduction after ultraendurance running, especially on the KE muscles. Neural drive reduction may have contributed to the relative preservation of peripheral function and also affected the evolution of the running speed during the 24TR.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources