Plasmonics for extreme light concentration and manipulation
- PMID: 20168343
- DOI: 10.1038/nmat2630
Plasmonics for extreme light concentration and manipulation
Erratum in
- Nat Mater. 2010 Apr;9(4):368
Abstract
The unprecedented ability of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavours. Plasmonic light concentrators can elegantly interface diffraction-limited dielectric optical components with nanophotonic structures. Passive and active plasmonic devices provide new pathways to generate, guide, modulate and detect light with structures that are similar in size to state-of-the-art electronic devices. With the ability to produce highly confined optical fields, the conventional rules for light-matter interactions need to be re-examined, and researchers are venturing into new regimes of optical physics. In this review we will discuss the basic concepts behind plasmonics-enabled light concentration and manipulation, make an attempt to capture the wide range of activities and excitement in this area, and speculate on possible future directions.
Similar articles
-
Nonlinear Graphene Nanoplasmonics.Acc Chem Res. 2019 Sep 17;52(9):2536-2547. doi: 10.1021/acs.accounts.9b00308. Epub 2019 Aug 26. Acc Chem Res. 2019. PMID: 31448890
-
Metamaterial, plasmonic and nanophotonic devices.Rep Prog Phys. 2017 Mar;80(3):036401. doi: 10.1088/1361-6633/aa518f. Epub 2017 Feb 6. Rep Prog Phys. 2017. PMID: 28166060
-
Imaging of Nanoscale Light Confinement in Plasmonic Nanoantennas by Brownian Optical Microscopy.ACS Nano. 2020 Jun 23;14(6):7666-7672. doi: 10.1021/acsnano.0c04019. Epub 2020 May 27. ACS Nano. 2020. PMID: 32438800
-
Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices.Nano Converg. 2017;4(1):32. doi: 10.1186/s40580-017-0128-8. Epub 2017 Dec 11. Nano Converg. 2017. PMID: 29276664 Free PMC article. Review.
-
Waveguide effective plasmonics with structure dispersion.Nanophotonics. 2021 Dec 8;11(9):1659-1676. doi: 10.1515/nanoph-2021-0613. eCollection 2022 Apr. Nanophotonics. 2021. PMID: 39633946 Free PMC article. Review.
Cited by
-
Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy.Nat Mater. 2011 Nov 23;10(12):911-21. doi: 10.1038/nmat3151. Nat Mater. 2011. PMID: 22109608
-
High-quality nanocavities through multimodal confinement of hyperbolic polaritons in hexagonal boron nitride.Nat Mater. 2024 Apr;23(4):499-505. doi: 10.1038/s41563-023-01785-w. Epub 2024 Feb 6. Nat Mater. 2024. PMID: 38321241
-
Structural color printing based on plasmonic metasurfaces of perfect light absorption.Sci Rep. 2015 Jun 5;5:11045. doi: 10.1038/srep11045. Sci Rep. 2015. PMID: 26047486 Free PMC article.
-
Surface plasmon resonances of arbitrarily shaped nanometallic structures in the small-screening-length limit.Proc Math Phys Eng Sci. 2016 Jul;472(2191):20160258. doi: 10.1098/rspa.2016.0258. Proc Math Phys Eng Sci. 2016. PMID: 27493575 Free PMC article.
-
On-Chip Ultrafast Plasmonic Graphene Hot Electron Bolometric Photodetector.ACS Omega. 2020 Jun 8;5(24):14711-14719. doi: 10.1021/acsomega.0c01308. eCollection 2020 Jun 23. ACS Omega. 2020. PMID: 32596608 Free PMC article.
References
LinkOut - more resources
Full Text Sources
Other Literature Sources