Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Feb;23(2):242-6.

Effects of pedaling speed on the power-duration relationship for high-intensity exercise

Affiliations
  • PMID: 2017022

Effects of pedaling speed on the power-duration relationship for high-intensity exercise

T J Carnevale et al. Med Sci Sports Exerc. 1991 Feb.

Abstract

Seven males (age = 20.4 +/- 0.3 yr) each performed a total of eight exhaustive exercise bouts (four at 60 rpm and four at 100 rpm) in order to determine the influence of pedaling frequency on the parameters of the power-duration relationship for high-intensity cycle ergometry. The power-endurance time data for each subject at each rpm were fit by nonlinear regression to extract parameters of the hyperbolic: (P - theta PA). t = W', where P = power output, t = time to exhaustion, and theta PA and W' are constants. theta PA (the power asymptote, in watts (W] reflects an inherent characteristic of aerobic energy production during exercise, above which only a finite amount of work (W', in joules) can be performed, regardless of the rate at which the work is performed. theta PA at 60 rpm (235 +/- 8 W) was significantly (15.9 +/- 4.5%, P less than 0.05) greater than theta PA at 100 rpm (204 +/- 11 W), thus confirming our hypothesis that endurance would be compromised while cycling at the higher pedaling frequency. In contrast, W' was not significantly (P greater than 0.05) affected by cadence (16.8 +/- 1.7 kJ at 60 rpm vs 18.9 +/- 2.2 kJ at 100 rpm). Our data are consistent with the implications of previous investigations which demonstrated a greater cardiorespiratory and blood/muscle lactate response during constant-power exercise while cycling at high vs low rpm and indicate that the theoretical maximum sustainable power (i.e., theta PA) during cycle ergometry in untrained males is greater at 60 rpm than at 100 rpm.

PubMed Disclaimer

Similar articles

Cited by