Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 1;201(7):1045-53.
doi: 10.1086/651144.

Cross-reactive neutralizing humoral immunity does not protect from HIV type 1 disease progression

Affiliations

Cross-reactive neutralizing humoral immunity does not protect from HIV type 1 disease progression

Zelda Euler et al. J Infect Dis. .

Abstract

Broadly reactive neutralizing antibodies are the focus of human immunodeficiency virus (HIV) type 1 vaccine design. However, only little is known about their role in acquired immunodeficiency syndrome (AIDS) pathogenesis and the factors associated with their development. Here we used a multisubtype panel of 23 HIV-1 variants to determine the prevalence of cross-reactive neutralizing activity in serum samples obtained approximately 35 months after seroconversion from 82 HIV-1 subtype B-infected participants from the Amsterdam Cohort Studies on HIV Infection and AIDS. Of these patients, 33%, 48%, and 20%, respectively, had strong, moderate, or absent cross-reactive neutralizing activity in serum. Viral RNA load at set point and AIDS-free survival were similar for the 3 patient groups. However, higher cross-reactive neutralizing activity was significantly associated with lower CD4(+) T cell counts before and soon after infection. Our findings underscore the importance of vaccine-elicited immunity in protecting from infection. The association between CD4(+) T cell counts and neutralizing humoral immunity may provide new clues as to how to achieve this goal.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms