Rapid and dynamic alterations of gene expression profiles of adult porcine bone marrow-derived stem cell in response to hypoxia
- PMID: 20172499
- PMCID: PMC3763490
- DOI: 10.1016/j.scr.2009.12.002
Rapid and dynamic alterations of gene expression profiles of adult porcine bone marrow-derived stem cell in response to hypoxia
Abstract
This study sought to identify the gene expression patterns of porcine bone marrow-derived MSC in response to hypoxia and to investigate novel specific hypoxic targets that may have a role in determining MSC proliferation/survival and differentiation. MSC from 15 animals were incubated in 1% oxygen and 8% carbon dioxide for 6, 12, and 24 h. RNA samples were isolated and assayed with Affymetrix porcine arrays and quantitative reverse-transcription PCR. Significant gene expression levels among the four groups of normoxia, 6-, 12-, and 24-h hypoxia were identified. The pattern in the 12-h hypoxia group was similar to that of the 24-h group. Of 23,924 probes, 377 and 210 genes were regulated in the 6- and 24-h hypoxia groups, respectively. Functional classification of the hypoxic regulated genes was mainly clustered in cell proliferation and response to stress. However, the major upregulated genes in the 6-h group were activated in cell cycle phases; the genes in the 24-h hypoxia were evenly separated into cell differentiation, apoptosis, and cellular metabolic processes. Twenty-eight genes were upregulated in all hypoxia groups; these genes are considered as hypoxic targets. Our results identified a genome-wide hypoxia-induced gene expression pattern in porcine MSC. This study provides a global view of molecular events in the cells during exposure to hypoxia and revealed a set of novel candidate hypoxic targets.
Published by Elsevier B.V.
Figures









References
-
- Barry FP. Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today. 2003;69(3):250. - PubMed
-
- Bobis S, Jarocha D, Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol. 2006;44(4):215. - PubMed
-
- Festy F, Hoareau L, Bes-Houtmann S, et al. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem Cell Biol. 2005;124(2):113. - PubMed
-
- Jeong JA, Hong SH, Gang EJ, et al. Differential gene expression profiling of human umbilical cord blood-derived mesenchymal stem cells by DNA microarray. Stem Cells. 2005;23(4):584. - PubMed
-
- Kermani AJ, Fathi F, Mowla SJ. Characterization and genetic manipulation of human umbilical cord vein mesenchymal stem cells: potential application in cell-based gene therapy. Rejuvenation Res. 2008;11(2):379. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources