Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys
- PMID: 20173752
- PMCID: PMC2834868
- DOI: 10.1038/nm.2089
Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys
Abstract
The worldwide diversity of HIV-1 presents an unprecedented challenge for vaccine development. Antigens derived from natural HIV-1 sequences have elicited only a limited breadth of cellular immune responses in nonhuman primate studies and clinical trials to date. Polyvalent 'mosaic' antigens, in contrast, are designed to optimize cellular immunologic coverage of global HIV-1 sequence diversity. Here we show that mosaic HIV-1 Gag, Pol and Env antigens expressed by recombinant, replication-incompetent adenovirus serotype 26 vectors markedly augmented both the breadth and depth without compromising the magnitude of antigen-specific T lymphocyte responses as compared with consensus or natural sequence HIV-1 antigens in rhesus monkeys. Polyvalent mosaic antigens therefore represent a promising strategy to expand cellular immunologic vaccine coverage for genetically diverse pathogens such as HIV-1.
Conflict of interest statement
Figures




Comment in
-
HIV vaccines: mosaic approach to virus diversity.Nat Med. 2010 Mar;16(3):268-70. doi: 10.1038/nm0310-268. Nat Med. 2010. PMID: 20208511 No abstract available.
Similar articles
-
HIV vaccines: mosaic approach to virus diversity.Nat Med. 2010 Mar;16(3):268-70. doi: 10.1038/nm0310-268. Nat Med. 2010. PMID: 20208511 No abstract available.
-
Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys.Nat Med. 2010 Mar;16(3):324-8. doi: 10.1038/nm.2108. Epub 2010 Feb 21. Nat Med. 2010. PMID: 20173754 Free PMC article.
-
Full-length HIV-1 immunogens induce greater magnitude and comparable breadth of T lymphocyte responses to conserved HIV-1 regions compared with conserved-region-only HIV-1 immunogens in rhesus monkeys.J Virol. 2012 Nov;86(21):11434-40. doi: 10.1128/JVI.01779-12. Epub 2012 Aug 15. J Virol. 2012. PMID: 22896617 Free PMC article.
-
Breadth of cellular and humoral immune responses elicited in rhesus monkeys by multi-valent mosaic and consensus immunogens.Virology. 2012 Jul 5;428(2):121-7. doi: 10.1016/j.virol.2012.03.012. Epub 2012 Apr 21. Virology. 2012. PMID: 22521913 Free PMC article.
-
Expanded breadth of the T-cell response to mosaic human immunodeficiency virus type 1 envelope DNA vaccination.J Virol. 2009 Mar;83(5):2201-15. doi: 10.1128/JVI.02256-08. Epub 2008 Dec 24. J Virol. 2009. PMID: 19109395 Free PMC article.
Cited by
-
The use of adenoviral vectors in gene therapy and vaccine approaches.Genet Mol Biol. 2022 Oct 7;45(3 Suppl 1):e20220079. doi: 10.1590/1678-4685-GMB-2022-0079. eCollection 2022. Genet Mol Biol. 2022. PMID: 36206378 Free PMC article.
-
Optimal sequence-based design for multi-antigen HIV-1 vaccines using minimally distant antigens.PLoS Comput Biol. 2022 Oct 31;18(10):e1010624. doi: 10.1371/journal.pcbi.1010624. eCollection 2022 Oct. PLoS Comput Biol. 2022. PMID: 36315492 Free PMC article.
-
Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost.J Virol. 2015 Jun;89(12):6462-80. doi: 10.1128/JVI.00383-15. Epub 2015 Apr 8. J Virol. 2015. PMID: 25855741 Free PMC article.
-
Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.PLoS One. 2015 Apr 9;10(4):e0122835. doi: 10.1371/journal.pone.0122835. eCollection 2015. PLoS One. 2015. PMID: 25856308 Free PMC article.
-
Strategies targeting hemagglutinin cocktail as a potential universal influenza vaccine.Front Microbiol. 2022 Sep 29;13:1014122. doi: 10.3389/fmicb.2022.1014122. eCollection 2022. Front Microbiol. 2022. PMID: 36246271 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
- U19 AI078526/AI/NIAID NIH HHS/United States
- U01 AI067854/AI/NIAID NIH HHS/United States
- AI061734/AI/NIAID NIH HHS/United States
- P01 AI061734/AI/NIAID NIH HHS/United States
- R01 AI066924/AI/NIAID NIH HHS/United States
- AI078526/AI/NIAID NIH HHS/United States
- P30 AI060354/AI/NIAID NIH HHS/United States
- U19 AI066305/AI/NIAID NIH HHS/United States
- AI066305/AI/NIAID NIH HHS/United States
- RR000168/RR/NCRR NIH HHS/United States
- P51 RR000168/RR/NCRR NIH HHS/United States
- AI084794/AI/NIAID NIH HHS/United States
- K26 RR000168/RR/NCRR NIH HHS/United States
- R01 AI084794/AI/NIAID NIH HHS/United States
- AI067854/AI/NIAID NIH HHS/United States
- AI066924/AI/NIAID NIH HHS/United States
- U19 AI067854/AI/NIAID NIH HHS/United States
- AI058727/AI/NIAID NIH HHS/United States
- R01 AI058727/AI/NIAID NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources