Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+ T cells in pancreatic lymph nodes
- PMID: 20174617
- PMCID: PMC2823486
- DOI: 10.2217/imt.09.24
Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+ T cells in pancreatic lymph nodes
Abstract
The ligand-activated transcription factor, aryl hydrocarbon receptor (AHR), is a novel inducer of adaptive Tregs. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the most potent AHR ligand, induces adaptive CD4+CD25+ Tregs during an acute graft-versus-host (GvH) response and prevents the generation of allospecific cytotoxic T lymphocytes. TCDD also suppresses the induction of experimental autoimmune encephalitis in association with an expanded population of Foxp3+ Tregs. In this study, we show that chronic treatment of NOD mice with TCDD potently suppresses the development of autoimmune Type 1 diabetes in parallel with greatly reduced pancreatic islet insulitis and an expanded population of CD4+CD25+Foxp3+ cells in the pancreatic lymph nodes. When treatment with TCDD was terminated after 15 weeks (23 weeks of age), mice developed diabetes over the next 8 weeks in association with lower numbers of Tregs and decreased activation of AHR. Analysis of the expression levels of several genes associated with inflammation, T-cell activation and/or Treg function in pancreatic lymph node cells failed to reveal any differences associated with TCDD treatment. Taken together, the data suggest that AHR activation by TCDD-like ligands may represent a novel avenue for treatment of immune-mediated diseases.
Keywords: 2,3,7,8-tetrachlorodibenzo-p-dioxin; AHR; NOD mice; TCDD; Type 1 diabetes; aryl hydrocarbon receptor; regulatory T cell.
Figures





References
-
- Funatake CJ, Marshall NB, Steppan LB, Mourich DV, Kerkvliet NI. Cutting edge: activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+ CD25+ cells with characteristics of regulatory T cells. J Immunol. 2005;175:4184–4188. First demonstration and initial characterization of a CD4+CD25+ T regulatory (Treg)-like cell induced by engagement of aryl hydrocarbon receptor (AhR) via 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment. - PubMed
-
- Funatake CJ, Marshall NB, Kerkvliet NI. 2,3,7,8-tetrachlorodibenzo-p-dioxin alters the differentiation of alloreactive CD8+ T cells toward a regulatory T cell phenotype by a mechanism that is dependent on aryl hydrocarbon receptor in CD4+ T cells. J Immunotoxicol. 2008;5:81–91. First paper to exhibit AHR-dependent effects on CD8+ differentiation into a regulatory phenotype induced by TCDD. - PubMed
-
- Marshall NB, Vorachek WR, Steppan LB, Mourich DV, Kerkvliet NI. Functional characterization and gene expression analysis of CD4+ CD25+ regulatory T cells generated in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Immunol. 2008;181:2382–2391. Extensive phenotypic and functional characterization of the novel subset of CD4+ Tregs induced by TCDD compared to conventional Tregs, including expression of Foxp3 and a role for IL-12R. - PMC - PubMed
-
- Quintana FJ, Basso AS, Iglesias AH, et al. Control of Treg and Th17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453:65–71. First report demonstrating a differential role for different AHR ligands in the suppression or exacerbation of experimental autoimmune encephalomyelitis through the induction of Tregs versus Th17, respectively. Concurrent companion publication along with [28] - PubMed
-
- Kerkvliet NI, Shepherd DM, Baecher-Steppan L. T lymphocytes are direct, aryl hydrocarbon receptor (AhR)-dependent targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): AhR expression in both CD4+ and CD8+ T cells is necessary for full suppression of a cytotoxic T lymphocyte response by TCDD. Toxicol Appl Pharmacol. 2002;185:146–152. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials