Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;10(6):1141-9.
doi: 10.1002/pmic.200900258.

Prediction of the human membrane proteome

Affiliations

Prediction of the human membrane proteome

Linn Fagerberg et al. Proteomics. 2010 Mar.

Abstract

Membrane proteins are key molecules in the cell, and are important targets for pharmaceutical drugs. Few three-dimensional structures of membrane proteins have been obtained, which makes computational prediction of membrane proteins crucial for studies of these key molecules. Here, seven membrane protein topology prediction methods based on different underlying algorithms, such as hidden Markov models, neural networks and support vector machines, have been used for analysis of the protein sequences from the 21,416 annotated genes in the human genome. The number of genes coding for a protein with predicted alpha-helical transmembrane region(s) ranged from 5508 to 7651, depending on the method used. Based on a majority decision method, we estimate 5539 human genes to code for membrane proteins, corresponding to approximately 26% of the human protein-coding genes. The largest fraction of these proteins has only one predicted transmembrane region, but there are also many proteins with seven predicted transmembrane regions, including the G-protein coupled receptors. A visualization tool displaying the topologies suggested by the eight prediction methods, for all predicted membrane proteins, is available on the public Human Protein Atlas portal (www.proteinatlas.org).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources