Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Feb;32(2):105-14.
doi: 10.3724/sp.j.1005.2010.00105.

[The impact of microRNAs on the evolution of metazoan complexity]

[Article in Chinese]
Affiliations
Review

[The impact of microRNAs on the evolution of metazoan complexity]

[Article in Chinese]
Zhong-Hua Dai et al. Yi Chuan. 2010 Feb.

Abstract

MicroRNAs (miRNAs) are a novel class of ~22 nt non-coding small RNAs. As crucial post-transcriptional regulators, miRNAs are involved in comprehensive biological processes such as developmental timing, cell proliferation and differentiation, oncogenesis and viral defenses. In addition to the roles in ontogenic physiology, researches on the area of miRNA phylogenetic conservation and diversity suggested that miRNAs play important roles in animal evolution through driving phenotypic variations in development. It has been postulated that miRNAs have enormous impacts on phenotypic variation and developmental complexity. Here we reviewed recent advances in the studies on the roles of miRNA in animal evolution, from aspects of the rate of miRNA evolution, the spatio-temporal expression pattern, the variation of target sites, and miRNA gene dynamics. We gave evidence to support the hypothesis that innovations in miRNA-mediated regulations drive the increase of metazoan complexity.

PubMed Disclaimer

LinkOut - more resources