Substance P receptor blockade decreases stretch-induced lung cytokines and lung injury in rats
- PMID: 20176632
- PMCID: PMC2872735
- DOI: 10.1113/jphysiol.2010.187658
Substance P receptor blockade decreases stretch-induced lung cytokines and lung injury in rats
Abstract
Overdistension of lung tissue during mechanical ventilation causes cytokine release, which may be facilitated by the autonomic nervous system. We used mechanical ventilation to cause lung injury in rats, and studied how cervical section of the vagus nerve, or substance P (SP) antagonism, affected the injury. The effects of 40 or 25 cmH(2)O high airway pressure injurious ventilation (HV(40) and HV(25)) were studied and compared with low airway pressure ventilation (LV) and spontaneous breathing (controls). Lung mechanics, lung weight, gas exchange, lung myeloperoxidase activity, lung concentrations of interleukin (IL)-1 beta and IL-6, and amounts of lung SP were measured. Control rats were intact, others were bivagotomized, and in some animals we administered the neurokinin-1 (NK-1) receptor blocking agent SR140333. We first determined the durations of HV(40) and HV(25) that induced the same levels of lung injury and increased lung contents of IL-1 beta and IL-6. They were 90 min and 120 min, respectively. Both HV(40) and HV(25) increased lung SP, IL-1 beta and IL-6 levels, these effects being markedly reduced by NK-1 receptor blockade. Bivagotomy reduced to a lesser extent the HV(40)- and HV(25)-induced increases in SP but significantly reduced cytokine production. Neither vagotomy nor NK-1 receptor blockade prevented HV(40)-induced lung injury but, in the HV(25) group, they made it possible to maintain lung injury indices close to those measured in the LV group. This study suggests that both neuronal and extra-neuronal SP might be involved in ventilator-induced lung inflammation and injury. NK-1 receptor blockade could be a pharmacological tool to minimize some adverse effects of mechanical ventilation.
Figures







Comment in
-
Cytokines, neurokines or both? Mixed mechanisms of mechanical lung injury.J Physiol. 2010 Jun 1;588(Pt 11):1813-4. doi: 10.1113/jphysiol.2010.191478. J Physiol. 2010. PMID: 20516345 Free PMC article. No abstract available.
References
-
- Balzamo E, Joanny P, Steinberg JG, Oliver C, Jammes Y. Mechanical ventilation increases substance P concentration in the vagus, sympathetic, and phrenic nerves. Am J Respir Crit Care Med. 1996;153:153–157. - PubMed
-
- Barnes PJ. Asthma as an axon reflex. Lancet. 1986;1:242–245. - PubMed
-
- Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol. 2004;202:145–156. - PubMed
-
- Blumberg S, Teichberg VI. Biological activity and enzymic degradation of substance P analogs: Implications for studies of the substance P receptor. Biochem Biophys Res Commun. 1979;90:347–354. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources