Automated medical image segmentation techniques
- PMID: 20177565
- PMCID: PMC2825001
- DOI: 10.4103/0971-6203.58777
Automated medical image segmentation techniques
Abstract
Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.
Keywords: Artificial intelligence techniques; computed tomography; magnetic resonance imaging; medical images artifacts; segmentation.
Conflict of interest statement
Figures








Similar articles
-
Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.Med Phys. 2019 Jun;46(6):2669-2682. doi: 10.1002/mp.13553. Epub 2019 May 6. Med Phys. 2019. PMID: 31002188 Free PMC article.
-
Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.Eur Radiol. 2020 Feb;30(2):823-832. doi: 10.1007/s00330-019-06441-z. Epub 2019 Oct 24. Eur Radiol. 2020. PMID: 31650265
-
Automated segmentation of the larynx on computed tomography images: a review.Biomed Eng Lett. 2022 Mar 18;12(2):175-183. doi: 10.1007/s13534-022-00221-3. eCollection 2022 May. Biomed Eng Lett. 2022. PMID: 35529346 Free PMC article. Review.
-
Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach.Artif Intell Med. 2018 Aug;90:34-41. doi: 10.1016/j.artmed.2018.07.001. Epub 2018 Jul 24. Artif Intell Med. 2018. PMID: 30054121
-
PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques.Eur J Nucl Med Mol Imaging. 2010 Nov;37(11):2165-87. doi: 10.1007/s00259-010-1423-3. Epub 2010 Mar 25. Eur J Nucl Med Mol Imaging. 2010. PMID: 20336455 Review.
Cited by
-
Gender differences in cerebral regional homogeneity of adult healthy volunteers: a resting-state FMRI study.Biomed Res Int. 2015;2015:183074. doi: 10.1155/2015/183074. Epub 2015 Jan 1. Biomed Res Int. 2015. PMID: 25629038 Free PMC article.
-
Deep Neural Networks for Medical Image Segmentation.J Healthc Eng. 2022 Mar 10;2022:9580991. doi: 10.1155/2022/9580991. eCollection 2022. J Healthc Eng. 2022. Retraction in: J Healthc Eng. 2023 Oct 11;2023:9781975. doi: 10.1155/2023/9781975. PMID: 35310182 Free PMC article. Retracted. Review.
-
A porosity model for medical image segmentation of vessels.Int J Numer Method Biomed Eng. 2022 Apr;38(4):e3580. doi: 10.1002/cnm.3580. Epub 2022 Feb 24. Int J Numer Method Biomed Eng. 2022. PMID: 35142065 Free PMC article.
-
Deep learning and level set approach for liver and tumor segmentation from CT scans.J Appl Clin Med Phys. 2020 Oct;21(10):200-209. doi: 10.1002/acm2.13003. Epub 2020 Aug 10. J Appl Clin Med Phys. 2020. PMID: 33113290 Free PMC article.
-
A stacking ensemble system for identifying the presence of histological variants in bladder carcinoma: a multicenter study.Front Oncol. 2025 Jan 10;14:1469427. doi: 10.3389/fonc.2024.1469427. eCollection 2024. Front Oncol. 2025. PMID: 39868365 Free PMC article.
References
-
- Withey DJ, Koles ZJ. Three generations of medical image segmentation: Methods and available software. Int J Bioelectromag. 2007;9:67–8.
-
- Prince JL, Links JM. Medical imaging signals and system. Pearson Education. 2006.
-
- Macovski A. Medical imaging systems. Prentice-Hall; 1983.
-
- Popilock R, Sandrasagaren K, Harris L, Kaser KA. CT artifact recognition for the nuclear technologist. J Nucl Med Technol. 2008;36:79–81. - PubMed
-
- Li H, Deklerck R, Cuyper BD, Hermanus A, Nyssen E, Cornelis J. Object recognition in brain CT-scans: Knowledge based fusion of data from multiple feature extractors. IEEE T Med Imaging. 1995;14:212–29. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources