Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;35(5):540-7.
doi: 10.1002/uog.7595.

Reference values for variables of fetal cardiocirculatory dynamics at 11-14 weeks of gestation

Affiliations
Free article

Reference values for variables of fetal cardiocirculatory dynamics at 11-14 weeks of gestation

W Rozmus-Warcholinska et al. Ultrasound Obstet Gynecol. 2010 May.
Free article

Abstract

Objective: Despite the increasing popularity of first-trimester fetal echocardiography, the evaluation of fetal heart function during this period remains challenging. The parameters of normal cardiac function at 11-14 weeks' gestation are not well defined and appropriate reference values have not yet been established. The purpose of this study was to evaluate the fetal cardiocirculatory dynamics during routine first-trimester screening and establish cross-sectional reference ranges for 11-14 weeks' gestation.

Methods: Fetal echocardiography was performed on 202 women with singleton pregnancies at 11 + 0 to 13 + 6 weeks' gestation. Global cardiac function was evaluated using the heart : chest area ratio and Tei index of the left (LV) and right (RV) ventricles. The proportion of isovolumic contraction (ICT%) and ejection (ET%) times of the cardiac cycle, and the outflow velocities described the systolic function. Diastolic function was evaluated by the proportion of relaxation (IRT%) and filling (FT%) times, the ratio of the blood velocity through the atrioventricular valves during early filling (E) and atrial contraction (A) phases of the cardiac cycle, and ductus venosus pulsatility index for veins (DV-PIV). All participants had additional fetal echocardiography in the second trimester and neonatal clinical examination after birth to confirm normality.

Results: The mean heart : chest area ratio (0.203 +/- 0.04) and the Tei indices of both ventricles did not vary significantly during weeks 11-14, but the mean Tei index of the LV (0.375 +/- 0.092) was significantly higher than that of the RV (0.332 +/- 0.079) (P = 0.001). The fetal heart rate (FHR) decreased with increasing crown-rump length (CRL) (P < 0.00001). The LV-ICT% did not vary significantly (P = 0.27), LV-IRT% (P = 0.03) and LV-ET% decreased (P = 0.01), whereas the LV-FT% increased (P = 0.02) with CRL. The RV-ET% (P = 0.84) and RV-FT% (P = 0.60) remained relatively stable. The LV-ET% was lower than the RV-ET% (P = 0.0001). The LV (P = 0.004) and RV (P < 0.00001) outflow velocities and E : A ratios of both ventricles (P < 0.0001) increased with advancing gestation. The E-velocity of the LV (P = 0.003) and RV (P = 0.002) increased significantly but the increase in A-velocity was not significant. The outflow velocity (P = 0.008) and E-velocity (P = 0.005) of the RV were higher than that of the LV but the A-velocities were similar (P = 0.066). The mean DV-PIV was 0.97 +/- 0.23 and did not change significantly (P = 0.95) during weeks 11-14. The FHR and DV-PIV did not correlate with the Tei index of either ventricle.

Conclusion: We have established reference ranges for the noninvasive evaluation of fetal cardiocirculatory dynamics at 11-14 weeks' gestation.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources