Ocular biocompatibility of carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet delivery carriers
- PMID: 20178691
- DOI: 10.1163/156856209X416980
Ocular biocompatibility of carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet delivery carriers
Abstract
Due to its innocuous nature, hyaluronic acid (HA) is one of the most commonly used biopolymers for ophthalmic applications. We recently developed a cell sheet delivery system using carbodiimide cross-linked HA carriers. Chemical cross-linking provides an improvement in stability of polymer gels, but probably causes toxic side-effects. The aim of this study was to investigate the ocular biocompatibility of HA hydrogels cross-linked by 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC). HA discs without cross-linking and glutaraldehyde (GTA) cross-linked HA samples were used for comparison. The disc implants were inserted in the anterior chamber of rabbit eyes for 24 weeks and characterized by slit-lamp biomicroscopy, histology and scanning electron microscopy. The ophthalmic parameters obtained from biomicroscopic examinations were also scored to provide a quantitative grading system. Results of this study showed that the HA discs cross-linked with EDC had better ocular biocompatibility than those with GTA. The continued residence of GTA cross-linked HA implants in the intraocular cavity elicited severe tissue responses and significant foreign body reactions, whereas no adverse inflammatory reaction was observed after contact with non-cross-linked HA or EDC cross-linked HA samples. It is concluded that the cross-linking agent type gives influence on ocular biocompatibility of cell carriers and the EDC-HA hydrogel is an ideal candidate for use as an implantable material in cell sheet delivery applications.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources