Large conductance, Ca2+-activated K+ channels (BKCa) and arteriolar myogenic signaling
- PMID: 20178789
- PMCID: PMC3017811
- DOI: 10.1016/j.febslet.2010.02.045
Large conductance, Ca2+-activated K+ channels (BKCa) and arteriolar myogenic signaling
Abstract
Myogenic, or pressure-induced, vasoconstriction is critical for local blood flow autoregulation. Underlying this vascular smooth muscle (VSM) response are events including membrane depolarization, Ca(2+) entry and mobilization, and activation of contractile proteins. Large conductance, Ca(2+)-activated K(+) channel (BK(Ca)) has been implicated in several of these steps including, (1) channel closure causing membrane depolarization, and (2) channel opening causing hyperpolarization to oppose excessive pressure-induced vasoconstriction. As multiple mechanisms regulate BK(Ca) activity (subunit composition, membrane potential (Em) and Ca(2+) levels, post-translational modification) tissue level diversity is predicted. Importantly, heterogeneity in BK(Ca) channel activity may contribute to tissue-specific differences in regulation of myogenic vasoconstriction, allowing local hemodynamics to be matched to metabolic requirements. Knowledge of such variability will be important to exploiting the BK(Ca) channel as a therapeutic target and understanding systemic effects of its pharmacological manipulation.
Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Figures
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
