Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance
- PMID: 20179754
- PMCID: PMC2825256
- DOI: 10.1371/journal.pone.0009348
Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance
Abstract
Background: Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known.
Methods: Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory.
Results: Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT.
Conclusions: Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.
Conflict of interest statement
Figures
References
-
- Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry. 2005;10:40–68; image 45. - PubMed
-
- Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet. 2008;40:827–834. - PubMed
-
- Glatt SJ, Faraone SV, Tsuang MT. Meta-analysis identifies an association between the dopamine D2 receptor gene and schizophrenia. Mol Psychiatry. 2003;8:911–915. - PubMed
-
- Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–669. - PubMed
-
- Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160:13–23. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
