Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 22;5(2):e9348.
doi: 10.1371/journal.pone.0009348.

Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance

Affiliations

Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance

Alessandro Bertolino et al. PLoS One. .

Abstract

Background: Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known.

Methods: Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory.

Results: Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT.

Conclusions: Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Association between DRD2 rs1076560 genotype and [123I]IBZM binding.
Coronal section of the effect of DRD2 rs1076560 genotype (GG>GT) on [123I]IBZM specific binding (V3″) in right putamen (left) and relative scatterplot of individual data points from the cluster differentiating the two groups (right).
Figure 2
Figure 2. Association between DRD2 rs1076560 genotype and [123I]FP-CIT binding.
Coronal section of the effect of DRD2 rs1076560 genotype (GG>GT) on [123I]FP-CIT specific binding (V3″) in left putamen (left) and relative scatterplot of individual data points from the cluster differentiating the two groups (right).
Figure 3
Figure 3. Correlation between BOLD fMRI activity in prefrontal cortex and the striatal dopamine D2 signaling factor in GG subjects.
3D rendering of the correlation between the striatal dopamine D2 signaling factor and BOLD fMRI activity during the 2-Back WM task in GG subjects (left) with the relative scatterplot of the correlation in prefrontal cortex showing individual data points (right).
Figure 4
Figure 4. Correlation between BOLD fMRI activity in prefrontal cortex and the striatal dopamine D2 signaling factor in GT subjects.
3D rendering of the correlation between the striatal dopamine D2 signaling factor and BOLD fMRI activity during the 2-Back WM task in GT subjects (left) with the relative scatterplot of the correlation in prefrontal cortex showing individual data points (right).

Similar articles

Cited by

References

    1. Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry. 2005;10:40–68; image 45. - PubMed
    1. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet. 2008;40:827–834. - PubMed
    1. Glatt SJ, Faraone SV, Tsuang MT. Meta-analysis identifies an association between the dopamine D2 receptor gene and schizophrenia. Mol Psychiatry. 2003;8:911–915. - PubMed
    1. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–669. - PubMed
    1. Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160:13–23. - PubMed

Publication types

MeSH terms

Substances