Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar;39(3):1115-32.
doi: 10.1039/b909105j. Epub 2009 Dec 4.

Engineered voltage-responsive nanopores

Affiliations
Review

Engineered voltage-responsive nanopores

Zuzanna S Siwy et al. Chem Soc Rev. 2010 Mar.

Abstract

The creation of synthetic devices that mimic functionality of biological systems is a task of fundamental importance for the future development of bio- and nanotechnology and also an ultimate test of our understanding of the biological systems. Among a plethora of bio-inspired devices, designed nanopores and nanochannels with an embedded functionality are of particular interest because of their potential applications in nanofluidic electronics, biosensing, separation, synthetic biology, and single-molecule manipulation. In this respect, nanopores with built-in stimulus-responsive properties are of special benefit. A transmembrane potential is a particularly useful stimulus as it is non-invasive, tunable, and can act over a short time scale. This critical review considers engineered solid-state and protein nanopores with voltage-responsive properties. The engineered systems show nonlinear current-voltage curves, and/or voltage-dependent switching between discrete conductance states (141 references).

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources