Relationship between the tautomeric structures of curcumin derivatives and their Abeta-binding activities in the context of therapies for Alzheimer's disease
- PMID: 20181392
- DOI: 10.1016/j.biomaterials.2010.01.142
Relationship between the tautomeric structures of curcumin derivatives and their Abeta-binding activities in the context of therapies for Alzheimer's disease
Abstract
Curcumin, which can exist in an equilibrium between keto and enol tautomers, binds to beta-amyloid (Abeta) fibrils/aggregates. The aim of this study was to assess the relationship between the tautomeric structures of curcumin derivatives and their Abeta-binding activities. Curcumin derivatives with keto-enol tautomerism showed high levels of binding to Abeta aggregates but not to Abeta monomers. The binding activity of the keto form analogue of curcumin to Abeta aggregates was found to be much weaker than that of curcumin derivatives with keto-enol tautomerism. The color of a curcumin derivative with keto-enol tautomerism, which was substituted at the C-4 position, changed from yellow to orange within 30 min of being combined with Abeta aggregates in physiological buffer. This resulted from a remarkable increase in the enol form with extended conjugation of double bonds upon binding. These findings suggest that curcumin derivatives exist predominantly in the enol form during binding to Abeta aggregates, and that the enolization of curcumin derivatives is crucial for binding to Abeta aggregates. The keto-enol tautomerism of curcumin derivatives may be a novel target for the design of amyloid-binding agents that can be used both for therapy and for amyloid detection in Alzheimer's disease.
Copyright 2010 Elsevier Ltd. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources