Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis
- PMID: 20182627
- PMCID: PMC2825658
- DOI: 10.1155/2010/453892
Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis
Abstract
Type 2 diabetes is the most prevalent and serious metabolic disease all over the world, and its hallmarks are pancreatic beta-cell dysfunction and insulin resistance. Under diabetic conditions, chronic hyperglycemia and subsequent augmentation of reactive oxygen species (ROS) deteriorate beta-cell function and increase insulin resistance which leads to the aggravation of type 2 diabetes. In addition, chronic hyperglycemia and ROS are also involved in the development of atherosclerosis which is often observed under diabetic conditions. Taken together, it is likely that ROS play an important role in the development of type 2 diabetes and atherosclerosis.
Figures




Similar articles
-
Involvement of oxidative stress in suppression of insulin biosynthesis under diabetic conditions.Int J Mol Sci. 2012 Oct 22;13(10):13680-90. doi: 10.3390/ijms131013680. Int J Mol Sci. 2012. PMID: 23202973 Free PMC article. Review.
-
Involvement of oxidative stress in the pathogenesis of diabetes.Antioxid Redox Signal. 2007 Mar;9(3):355-66. doi: 10.1089/ars.2006.1465. Antioxid Redox Signal. 2007. PMID: 17184181 Review.
-
Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes.Cell Biochem Biophys. 2007;48(2-3):139-46. doi: 10.1007/s12013-007-0026-5. Cell Biochem Biophys. 2007. PMID: 17709883
-
Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction.Oxid Med Cell Longev. 2015;2015:181643. doi: 10.1155/2015/181643. Epub 2015 Jul 14. Oxid Med Cell Longev. 2015. PMID: 26257839 Free PMC article. Review.
-
Oxidative stress and the JNK pathway are involved in the development of type 1 and type 2 diabetes.Curr Mol Med. 2007 Nov;7(7):674-86. doi: 10.2174/156652407782564408. Curr Mol Med. 2007. PMID: 18045145 Review.
Cited by
-
Oxidative Stress, Antioxidant Capabilities, and Bioavailability: Ellagic Acid or Urolithins?Antioxidants (Basel). 2020 Aug 4;9(8):707. doi: 10.3390/antiox9080707. Antioxidants (Basel). 2020. PMID: 32759749 Free PMC article. Review.
-
High Density Lipoproteins and Diabetes.Cells. 2021 Apr 9;10(4):850. doi: 10.3390/cells10040850. Cells. 2021. PMID: 33918571 Free PMC article. Review.
-
Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation.Sci Rep. 2016 Jun 2;6:27236. doi: 10.1038/srep27236. Sci Rep. 2016. PMID: 27250532 Free PMC article.
-
Oxidative stress-mediated beta cell death and dysfunction as a target for diabetes management.Front Endocrinol (Lausanne). 2022 Sep 23;13:1006376. doi: 10.3389/fendo.2022.1006376. eCollection 2022. Front Endocrinol (Lausanne). 2022. PMID: 36246880 Free PMC article. Review.
-
Flaxseed Oil Containing α -Linolenic Acid Ester of Plant Sterol Improved Atherosclerosis in ApoE Deficient Mice.Oxid Med Cell Longev. 2015;2015:958217. doi: 10.1155/2015/958217. Epub 2015 Jun 9. Oxid Med Cell Longev. 2015. PMID: 26180602 Free PMC article.
References
-
- Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48(1):1–9. - PubMed
-
- Dandona P, Thusu K, Cook S, et al. Oxidative damage to DNA in diabetes mellitus. The Lancet. 1996;347(8999):444–445. - PubMed
-
- Sakurai T, Tsuchiya S. Superoxide production from nonenzymatically glycated protein. FEBS Letters. 1988;236(2):406–410. - PubMed
-
- Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–820. - PubMed
-
- Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. The American Journal of Cardiology. 2003;91(3):7A–11A. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical