Engineering the Escherichia coli fermentative metabolism
- PMID: 20182928
- DOI: 10.1007/10_2009_61
Engineering the Escherichia coli fermentative metabolism
Abstract
Fermentative metabolism constitutes a fundamental cellular capacity for industrial biocatalysis. Escherichia coli is an important microorganism in the field of metabolic engineering for its well-known molecular characteristics and its rapid growth. It can adapt to different growth conditions and is able to grow in the presence or absence of oxygen. Through the use of metabolic pathway engineering and bioprocessing techniques, it is possible to explore the fundamental cellular properties and to exploit its capacity to be applied as industrial biocatalysts to produce a wide array of chemicals. The objective of this chapter is to review the metabolic engineering efforts carried out with E. coli by manipulating the central carbon metabolism and fermentative pathways to obtain strains that produce metabolites with high titers, such as ethanol, alanine, lactate and succinate.
Similar articles
-
Development of ethanologenic bacteria.Adv Biochem Eng Biotechnol. 2007;108:237-61. doi: 10.1007/10_2007_068. Adv Biochem Eng Biotechnol. 2007. PMID: 17665158 Review.
-
Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit.Nat Biotechnol. 2017 Mar;35(3):273-279. doi: 10.1038/nbt.3796. Epub 2017 Feb 13. Nat Biotechnol. 2017. PMID: 28191902 Free PMC article.
-
Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli.Biotechnol Bioeng. 2012 Jan;109(1):187-98. doi: 10.1002/bit.23309. Epub 2011 Aug 31. Biotechnol Bioeng. 2012. PMID: 21858785
-
Engineering Escherichia coli to improve culture performance and reduce formation of by-products during recombinant protein production under transient intermittent anaerobic conditions.Biotechnol Bioeng. 2006 Aug 20;94(6):1164-75. doi: 10.1002/bit.20954. Biotechnol Bioeng. 2006. PMID: 16718678
-
Engineering Escherichia coli Cell Factories for n-Butanol Production.Adv Biochem Eng Biotechnol. 2016;155:141-63. doi: 10.1007/10_2015_306. Adv Biochem Eng Biotechnol. 2016. PMID: 25662903 Review.
Cited by
-
Cell surface display of a β-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol.J Ind Microbiol Biotechnol. 2012 Aug;39(8):1141-52. doi: 10.1007/s10295-012-1122-0. Epub 2012 May 26. J Ind Microbiol Biotechnol. 2012. PMID: 22638789
-
Mapping high-growth phenotypes in the flux space of microbial metabolism.J R Soc Interface. 2015 Sep 6;12(110):0543. doi: 10.1098/rsif.2015.0543. J R Soc Interface. 2015. PMID: 26289659 Free PMC article.
-
Effects of type of substrate and dilution rate on fermentation in serial rumen mixed cultures.Front Microbiol. 2024 Feb 9;15:1356966. doi: 10.3389/fmicb.2024.1356966. eCollection 2024. Front Microbiol. 2024. PMID: 38389534 Free PMC article.
-
Bacteria and Methanogens in the Human Microbiome: a Review of Syntrophic Interactions.Microb Ecol. 2022 Apr;83(3):536-554. doi: 10.1007/s00248-021-01796-7. Epub 2021 Jun 24. Microb Ecol. 2022. PMID: 34169332 Review.
-
d-Ribose Catabolism in Archaea: Discovery of a Novel Oxidative Pathway in Haloarcula Species.J Bacteriol. 2020 Jan 15;202(3):e00608-19. doi: 10.1128/JB.00608-19. Print 2020 Jan 15. J Bacteriol. 2020. PMID: 31712277 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources