Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;30(5):1007-13.
doi: 10.1161/ATVBAHA.110.204354. Epub 2010 Feb 25.

Oxidized phospholipids regulate expression of ATF4 and VEGF in endothelial cells via NRF2-dependent mechanism: novel point of convergence between electrophilic and unfolded protein stress pathways

Affiliations

Oxidized phospholipids regulate expression of ATF4 and VEGF in endothelial cells via NRF2-dependent mechanism: novel point of convergence between electrophilic and unfolded protein stress pathways

Taras Afonyushkin et al. Arterioscler Thromb Vasc Biol. 2010 May.

Abstract

Objective: The ATF4 arm of the unfolded protein response is increasingly recognized for its relevance to pathology, and in particular to angiogenic reactions. Oxidized phospholipids (OxPLs), known to accumulate in atherosclerotic vessels, were shown to upregulate vascular endothelial growth factor (VEGF) and induce angiogenesis via an ATF4-dependent mechanism. In this study, we analyzed the mechanism of ATF4 upregulation by OxPLs and more specifically the involvement of NRF2, the major transcriptional mediator of electrophilic stress response.

Methods and results: Using reverse transcription/real-time polymerase chain reaction and Western blotting, we found that OxPLs induced upregulation of ATF4 mRNA and protein in several types of endothelial cells and that these effects were suppressed by short interfering RNA (siRNA) against NRF2. Electrophilic (iso)prostaglandins and oxidized low-density lipoprotein, similarly to OxPLs, elevated ATF4 mRNA levels in an NRF2-dependent mode. Chromatin immunoprecipitation revealed OxPL-dependent binding of NRF2 to a putative antioxidant response element site in the ATF4 gene promoter. Knockdown of NRF2 inhibited OxPL-induced elevation of VEGF mRNA and endothelial cell sprout formation.

Conclusion: Our data characterize NRF2 as a positive regulator of ATF4 and identify a novel cross-talk between electrophilic and unfolded protein responses, which may play a role in stress-induced angiogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources