Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 16;106(7):1290-302.
doi: 10.1161/CIRCRESAHA.109.206045. Epub 2010 Feb 25.

Sox2 transduction enhances cardiovascular repair capacity of blood-derived mesoangioblasts

Affiliations
Free article

Sox2 transduction enhances cardiovascular repair capacity of blood-derived mesoangioblasts

Masamichi Koyanagi et al. Circ Res. .
Free article

Abstract

Rationale: Complementation of pluripotency genes may improve adult stem cell functions.

Objectives: Here we show that clonally expandable, telomerase expressing progenitor cells can be isolated from peripheral blood of children. The surface marker profile of the clonally expanded cells is distinct from hematopoietic or mesenchymal stromal cells, and resembles that of embryonic multipotent mesoangioblasts. Cell numbers and proliferative capacity correlated with donor age. Isolated circulating mesoangioblasts (cMABs) express the pluripotency markers Klf4, c-Myc, as well as low levels of Oct3/4, but lack Sox2. Therefore, we tested whether overexpression of Sox2 enhances pluripotency and facilitates differentiation of cMABs in cardiovascular lineages.

Methods and results: Lentiviral transduction of Sox2 (Sox-MABs) enhanced the capacity of cMABs to differentiate into endothelial cells and cardiomyocytes in vitro. Furthermore, the number of smooth muscle actin positive cells was higher in Sox-MABs. In addition, pluripotency of Sox-MABs was shown by demonstrating the generation of endodermal and ectodermal progenies. To test whether Sox-MABs may exhibit improved therapeutic potential, we injected Sox-MABs into nude mice after acute myocardial infarction. Four weeks after cell therapy with Sox-MABs, cardiac function was significantly improved compared to mice treated with control cMABs. Furthermore, cell therapy with Sox-MABs resulted in increased number of differentiated cardiomyocytes, endothelial cells, and smooth muscle cells in vivo.

Conclusions: The complementation of Sox2 in Oct3/4-, Klf4-, and c-Myc-expressing cMABs enhanced the differentiation into all 3 cardiovascular lineages and improved the functional recovery after acute myocardial infarction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources