The genetics of dilated cardiomyopathy
- PMID: 20186049
- PMCID: PMC2939233
- DOI: 10.1097/HCO.0b013e328337ba52
The genetics of dilated cardiomyopathy
Abstract
Purpose of review: More than 40 different individual genes have been implicated in the inheritance of dilated cardiomyopathy. For a subset of these genes, mutations can lead to a spectrum of cardiomyopathy that extends to hypertrophic cardiomyopathy and left ventricular noncompaction. In nearly all cases, there is an increased risk of arrhythmias. With some genetic mutations, extracardiac manifestations are likely to be present. The precise genetic cause can usually not be discerned from the cardiac and/or extracardiac manifestations and requires molecular genetic diagnosis for prognostic determination and cardiac care.
Recent findings: Newer technologies are influencing genetic testing, especially cardiomyopathy genetic testing, wherein an increased number of genes are now routinely being tested simultaneously. Although this approach to testing multiple genes is increasing the diagnostic yield, the analysis of multiple genes in one test is also resulting in a large amount of genetic information of unclear significance.
Summary: Genetic testing is highly useful in the care of patients and families, as it guides diagnosis, influences care and aids in prognosis. However, the large amount of benign human genetic variation may complicate genetic results and often requires a skilled team to accurately interpret the findings.
Figures
References
-
- Mestroni L, Rocco C, Gregori D, et al. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group. J Am Coll Cardiol. 1999;34:181–190. - PubMed
-
- Michels VV, Moll PP, Miller FA, et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med. 1992;326:77–82. - PubMed
-
- Baig MK, Goldman JH, Caforio AL, et al. Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J Am Coll Cardiol. 1998;31:195–201. - PubMed
-
- DeWitt MM, MacLeod HM, Soliven B, et al. Phospholamban R14 deletion results in late-onset, mild, hereditary dilated cardiomyopathy. J Am Coll Cardiol. 2006;48:1396–1398. - PubMed
-
- Schuster SC. Next-generation sequencing transforms today's biology. Nat Methods. 2008;5:16–18. [This work discusses new sequencing technologies to explain how highly parallel sequencing can reduce cost] - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
