Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 23;5(2):e9349.
doi: 10.1371/journal.pone.0009349.

A whole virus pandemic influenza H1N1 vaccine is highly immunogenic and protective in active immunization and passive protection mouse models

Affiliations

A whole virus pandemic influenza H1N1 vaccine is highly immunogenic and protective in active immunization and passive protection mouse models

Otfried Kistner et al. PLoS One. .

Abstract

The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus challenge. The immunogenicity in this model was comparable to that of a whole virus H5N1 vaccine, which had previously been demonstrated to induce high levels of seroprotection in clinical studies. The efficacy of the H1N1 pandemic vaccine in protecting against live virus challenge was also seen to be equivalent to that of the H5N1 vaccine. The protective efficacy of the H1N1 vaccine was also confirmed using a severe combined immunodeficient (SCID) mouse model. It was demonstrated that mouse and guinea pig immune sera elicited following active H1N1 vaccination resulted in 100% protection of SCID mice following passive transfer of immune sera and lethal challenge. The immune responses to a whole virus pandemic H1N1 and a split seasonal H1N1 vaccine were also compared in this study. It was demonstrated that the whole virus vaccine induced a balanced Th-1 and Th-2 response in mice, whereas the split vaccine induced mainly a Th-2 response and only minimal levels of Th-1 responses. These data supported the initiation of clinical studies with the same low doses of whole virus vaccine that had previously been demonstrated to be immunogenic in clinical studies with a whole virus H5N1 vaccine.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: All authors are shareholders and employees of Baxter Bioscience, a manufacturer of influenza vaccines. P. Noel Barrett, Otfried Kistner, Wolfgang Mundt, Leopold Grillberger, Manfred Reiter, Christa Tauer, and Alois Sachslehner are holders of patents related to Vero-cell derived influenza vaccines. The authors agree to make freely available any materials and information associated with the publication that are reasonably requested by others for the purpose of academic, noncommercial research.

Figures

Figure 1
Figure 1. Protection of mice from lung viremia.
Groups of CD1 mice were immunized twice with five-fold serial dilutions of pandemic H1N1 (H1N1 A/California/7/2009) whole virus vaccine, before being challenged intranasally with 105 TCID50. Lungs were harvested at day three after challenge, and virus titers determined as described (Methods). Lack of detection of virus in lungs was considered indicative of protection.
Figure 2
Figure 2. Th-1 and Th-2 cytokine responses in mice immunized with seasonal and pandemic H1N1, and pandemic H5N1 vaccines.
Balb/c mice were immunized with pandemic H1N1 (H1N1 A/California/7/2009), seasonal H1N1 (H1N1 A/Brisbane/59/2007), and pandemic H5N1 (H5N1 A/Vietnam/1203/2004) vaccines. Spleen cells were collected 7 days after the first, or 21 days after the booster immunization (i.e. 42 days after the first), and stimulated with various seasonal or pandemic influenza virus antigens, before determination of cells responding by secretion of either IFN-g or IL-4 by an ELISPOT assay. Anti-HA IgG subclass responses were analyzed by ELISA using sera collected on day 42.
Figure 3
Figure 3. H1N1 challenge and passive protection of SCID mice.
SCID mice were challenged with 105 TCID50 pandemic H1N1 (H1N1 A/California/7/2009) by intranasal instillation, and survival monitored for 30 days. For passive protection, 200 µl immune mouse or guinea pig (GP) sera, or naïve mouse serum, were intraperitoneally administered to mice both at days one and two prior to virus challenge.

Similar articles

Cited by

References

    1. Outbreak of swine-origin influenza A (H1N1) virus infection - Mexico, March-April 2009. MMWR Morb Mortal Wkly Rep. 2009;58:467–470. - PubMed
    1. WHO Pandemic (H1N1) 2009 - update 85. 2010 Available: http://www.who.int/csr/don/2010_01_29/en/index.html. Accessed 8 February 2010.
    1. Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, et al. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature. 2009;460:1021–1025. - PMC - PubMed
    1. CDC Serum cross-reactive antibody response to a novel influenza A (H1N1) virus after vaccination with seasonal influenza vaccine. MMWR Morb Mortal Wkly Rep. 2009;58:521–524. - PubMed
    1. Treanor JJ, Campbell JD, Zangwill KM, Rowe T, Wolff M. Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine. N Engl J Med. 2006;354:1343–1351. - PubMed

Publication types

MeSH terms