Mitochondrial therapies for Parkinson's disease
- PMID: 20187246
- PMCID: PMC5797696
- DOI: 10.1002/mds.22781
Mitochondrial therapies for Parkinson's disease
Abstract
Parkinson's disease (PD) is marked by widespread neurodegeneration in the brain in addition to a selective yet prominent and progressive loss of nigrostriatal dopaminergic neurons. Of the multiple theories suggested in the pathogenesis of PD, mitochondrial dysfunction takes a center stage in both sporadic and familial forms of illness. Deficits in mitochondrial functions due to impaired bioenergetics, aging associated increased generation of reactive oxygen species, damage to mitochondrial DNA, impaired calcium buffering, and alterations in mitochondrial morphology may contribute to improper functioning of the CNS leading to neurodegeneration. These mitochondrial alterations suggest that a potential target worth exploring for neuroprotective therapies are the ones that can preserve mitochondrial functions in PD. Here, we provide a recent update on potential drugs that are known to block mitochondrial dysfunctions in various experimental models and those that are currently under clinical trials for PD. We also review novel mitochondrial survival pathways that provide hope and promise for innovative neuroprotective therapies in the future that can be explored as possible therapeutic intervention for PD pathogenesis.
References
-
- Bindoff LA, Birch-Machin M, Cartlidge NE, Parker WD, Jr, Turnbull DM. Mitochondrial function in Parkinson’s disease. Lancet. 1989;2:49. - PubMed
-
- Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem. 1990;54:823–827. - PubMed
-
- Mann VM, Cooper JM, Krige D, Daniel SE, Schapira AH, Marsden CD. Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain. 1992;115(Part 2):333–342. - PubMed
-
- Janetzky B, Hauck S, Youdim MB, et al. Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci Lett. 1994;169:126–128. - PubMed
-
- Hattori N, Tanaka M, Ozawa T, Mizuno Y. Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann Neurol. 1991;30:563–571. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources